7.若銳角α滿足cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,則sin2α=( 。
A.$\frac{7}{25}$B.$\frac{16}{25}$C.$\frac{18}{25}$D.$\frac{24}{25}$

分析 利用兩角和的余弦函數(shù)公式化簡已知可得cosα-sinα=$\frac{3\sqrt{2}}{5}$,兩邊平方,利用二倍角的正弦函數(shù)公式即可解得sin2α的值.

解答 解:∵銳角α滿足cos(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(cosα-sinα)=$\frac{3}{5}$,
∴cosα-sinα=$\frac{3\sqrt{2}}{5}$,兩邊平方,可得:1-sin2α=$\frac{18}{25}$,
∴sin2α=$\frac{7}{25}$.
故選:A.

點評 本題主要考查了兩角和的余弦函數(shù)公式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.在數(shù)列{an}中,a1=2,an=an-1+ln(1+$\frac{1}{n-1}$)(n≥2)則{an}=( 。
A.2+nlnnB.2+(n-1)lnnC.2+lnnD.1+n+lnn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(Ⅰ)2lg5+lg4+ln$\sqrt{e}$;
(Ⅱ)已知第二象限角α滿足sinα=$\frac{1}{3}$,求cosα的值;
(Ⅲ)已知tanα=2,求$\frac{4cosα+sinα}{3cosα-2sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知數(shù)列{an}中,${a_n}≠0,{a_1}=1,\frac{1}{{{a_{n+1}}}}=\frac{1}{a_n}+2$,則a20的值為$\frac{1}{39}$ .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知定義在R上的函數(shù)f(x)滿足f(x+4)=f(x)+f(2).若函數(shù)y=f(x-1)的圖象關于直線x=1對稱,求f(2018);
(2)已知函數(shù)f(x)=$\sqrt{m{x^2}+(m-3)x+1}$的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{y≥-1}\\{4x+y≤9}\\{x+y≤3}\end{array}\right.$,記z=mx+y,若z的最大值為f(m),則當m∈[2,4]時,f(m)最大值和最小值之和為( 。
A.4B.10C.13D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知二次函數(shù)f(x)滿足:①$f(x)≤f({\frac{1-2a}{2}})({a∈R})$; ②若x1<x2且x1+x2=0時,有f(x1)>f(x2).則實數(shù)a的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設m∈R,若函數(shù)f(x)=(m+1)x${\;}^{\frac{2}{3}}$+mx+1是偶函數(shù),則f(x)的單調遞增區(qū)間是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.曲線y=x2 與直線y=x 所圍成的封閉圖形的面積為( 。
A.1B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

同步練習冊答案