4.sin20°sin50°-cos160°sin40°的值為( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 利用誘導(dǎo)公式、兩角和差的余弦公式,化簡(jiǎn)所給的式子,可得結(jié)果.

解答 解:sin20°sin50°-cos160°sin40°=sin20°sin50°+cos20°cos50°=cos(50°-20°)=cos30°=$\frac{\sqrt{3}}{2}$,
故選:D.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某校有老師200人,男學(xué)生1400人,女學(xué)生1200人,現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為90人,則n=210.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知點(diǎn)A(-2,2),B(-2,6),C(4,-2),點(diǎn)P坐標(biāo)滿足x2+y2≤4,求|PA|2+|PB|2+|PC|2的取值范圍是[72,88].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足  則點(diǎn)集|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,$\left\{{P\left|{\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}}\right.}\right\}$,|λ|+|μ|≤1( λ、μ為實(shí)數(shù))所表示的區(qū)域的面積是( 。
A.8B.4$\sqrt{2}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,E,F(xiàn)分別為PA,BD的中點(diǎn),PA=PD=AD=2.
(1)證明:EF∥平面PBC;
(2)若$PB=\sqrt{6}$,求二面角E-DF-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.動(dòng)點(diǎn)P到直線x+5=0的距離減去它到M(2,0)的距離的差等于3,則點(diǎn)P的軌跡是( 。
A.直線B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow a=(3,2),\overrightarrow b=(x,1-y)$且$\overrightarrow a∥\overrightarrow b$,若x,y均為正數(shù),則$\frac{3}{x}+\frac{2}{y}$的最小值是( 。
A.24B.8C.$\frac{8}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.學(xué)校為了了解高一新生男生得到體能狀況,從高一新生中抽取若干名男生進(jìn)行鉛球測(cè)試,把所得數(shù)據(jù)(精確到0.1米)進(jìn)行整理后,分成6組畫(huà)出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(1)請(qǐng)將頻率分布直方圖補(bǔ)充完整;
(2)該校參加這次鉛球測(cè)試的男生有多少人?
(3)若成績(jī)?cè)?.0米以上(含8.0米)的為合格,試求這次鉛球測(cè)試的成績(jī)的合格率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是( 。ヽm2( 。
A.80B.76C.72D.68

查看答案和解析>>

同步練習(xí)冊(cè)答案