用二分法求函數(shù)f(x)=x3+x2-2x-1的一個點(diǎn),可選作初始區(qū)間的是
 
考點(diǎn):二分法求方程的近似解
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別將x=-1,x=0代入函數(shù)的表達(dá)式,得f(-1)f(0)<0,從而得出答案.
解答: 解:∵f(-1)=-1+1+2-1=1>0,f(0)=-1<0,
∴可選作初始區(qū)間的是(-1,0),
故答案為:(-1,0).
點(diǎn)評:本題考查了用二分法求方程的近似解問題,本題屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,x+y=1,則
x2
x+2
+
y2
y+1
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+ax+1在(-∞,2]上單調(diào)遞減,則實數(shù)a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線一焦點(diǎn)坐標(biāo)為(0,-5),一漸近線方程為3x+4y=0,則雙曲線的離心率為( 。
A、
3
4
B、
5
4
C、
5
3
5
4
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,存在常數(shù)A,B,C,使得an+Sn=An2+Bn+C對任意正整數(shù)n都成立.
(1)若數(shù)列{an}為等差數(shù)列,求3A-B+C的值;
(2)若A=-
1
2
,B=-
3
2
,C=1,設(shè)bn=an+n數(shù)列{nbn}的前n項和為Tn,求Tn
(3)若C=0,{an}是首項為1的等差數(shù)列,設(shè)M=
100
i=1
1+
1
ai2
+
1
ai+12
,求不超過M的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)f(x)的解析式.
(1)已知f(
1-x
1+x
)=2x,求f(x);
(2)已知f(1-2x)=
1-x2
x2
,求f(x);
(3)已知f(x)+2f(
1
x
)=5x+9,求f(x);
(4)已知f(x)為二次函數(shù),且f(0)=2,f(x+1)-f(x)=x-1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-|x|在區(qū)間[a,+∞﹚上為減函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}滿足a1=1,a2=2,b1=2,且對任意的正整數(shù)i,j,k,l,當(dāng)i+j=k+l時都有ai+bj=ak+bl,則
1
2014
2014
i=1
(ai+bi)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足
x+y-2≤2
2x-y+2≥0
y≥0
,則z=y-x的最大值為( 。
A、2B、-2C、1D、-1

查看答案和解析>>

同步練習(xí)冊答案