【題目】設(shè)數(shù)列a1,a2,…,an,…中的每一項(xiàng)都不為0.求證:{an}為等差數(shù)列的充要條件是:對任何n∈N+,都有

【答案】見解析

【解析】分析:證明必要性,注意到相鄰兩項(xiàng)有重復(fù)元,考慮構(gòu)造裂項(xiàng),而可以幫助構(gòu)造裂項(xiàng),于是裂項(xiàng)相消即可證明;證明充分性,注意到相鄰兩式作差可分別得到,,,和,,的關(guān)系,然后得到,的關(guān)系,利用等差數(shù)列中項(xiàng)公式可得是等差數(shù)列

詳解:先證必要性.設(shè)數(shù)列{an}的公差為d.

若d=0,則所述等式顯然成立.

若d≠0,

再證充分性.

依題意

②-①

在上式兩端同乘a1an+1an+2,得a1=(n+1)an+1-nan+2.

同理可得a1=nan-(n-1)an+1.

③-④得2nan+1=n(an+2+an),即an+2-an+1=an+1-an,所以{an}是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域相同的函數(shù),若存在實(shí)數(shù)使,則稱函數(shù)是由“基函數(shù),”生成的.

(1)若函數(shù)是“基函數(shù),”生成的,求實(shí)數(shù)的值;

(2)試?yán)谩盎瘮?shù)”生成一個(gè)函數(shù),且同時(shí)滿足:①是偶函數(shù);②在區(qū)間上的最小值為.求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A中任意兩數(shù)之和不能被5整除,則的最大值為(

A. 17B. 18C. 15D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量a(cos2ωxsin2ωx,sinωx),b(2cosωx),設(shè)函數(shù)f(x)a·b(xR)的圖象關(guān)于直線x對稱,其中ω為常數(shù),且ω(0,1)

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;

(2)若將yf(x)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,再將所得圖象向右平移個(gè)單位,縱坐標(biāo)不變,得到yh(x)的圖象,若關(guān)于x的方程h(x)k0上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AEBF所成角的余弦值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函數(shù)y=f(x)存在與直線2x﹣y=0垂直的切線,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+ ,若g(x)有極大值點(diǎn)x1 , 求證: >a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若F(x)=f[f(x)+1]+m有兩個(gè)零點(diǎn)x1 , x2 , 則x1x2的取值范圍是(
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,ABC﹣A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值為 ,求三棱錐C1﹣A1CD的體積.

查看答案和解析>>

同步練習(xí)冊答案