【題目】下列說法正確的個(gè)數(shù)有_________
(1)已知變量和滿足關(guān)系,則與正相關(guān);(2)線性回歸直線必過點(diǎn) ;
(3)對(duì)于分類變量與的隨機(jī)變量,越大說明“與有關(guān)系”的可信度越大
(4)在刻畫回歸模型的擬合效果時(shí),殘差平方和越小,相關(guān)指數(shù)的值越大,說明擬合的效果越好.
【答案】3個(gè)
【解析】
直接利用線性回歸直線的相關(guān)理論知識(shí)的應(yīng)用求出結(jié)果.
(1)已知變量x和y滿足關(guān)系y=-2x+3,則x與y正相關(guān);應(yīng)該是:x與y負(fù)相關(guān).故錯(cuò)誤.
(2)線性回歸直線必過點(diǎn),線性回歸直線必過中心點(diǎn).故正確.
(3)對(duì)于分類變量A與B的隨機(jī)變量,越大說明“A與B有關(guān)系”的可信度越大.
根據(jù)課本上有原句,故正確.
(4)在刻畫回歸模型的擬合效果時(shí),殘差平方和越小,相關(guān)指數(shù)R2的值越大,說明擬合的效果越好.故正確,根據(jù)課本上有原句.
故填3個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線交橢圓于,兩點(diǎn),試問:是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高爾頓(釘)板是在一塊豎起的木板上釘上一排排互相平行、水平間隔相等的圓柱形鐵釘(如圖),并且每一排釘子數(shù)目都比上一排多一個(gè),一排中各個(gè)釘子恰好對(duì)準(zhǔn)上面一排兩相鄰鐵釘?shù)恼醒?從入口處放入一個(gè)直徑略小于兩顆釘子間隔的小球,當(dāng)小球從兩釘之間的間隙下落時(shí),由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過兩鐵釘?shù)拈g隙,又碰到下一排鐵釘.如此繼續(xù)下去,在最底層的5個(gè)出口處各放置一個(gè)容器接住小球.
(Ⅰ)理論上,小球落入4號(hào)容器的概率是多少?
(Ⅱ)一數(shù)學(xué)興趣小組取3個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號(hào)容器的小球個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,且對(duì)任意正整數(shù)都成立,數(shù)列的前項(xiàng)和為.
(1)若,且,求;
(2)是否存在實(shí)數(shù)k,使數(shù)列是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有k的值;若不存在,請(qǐng)說明理由;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于分”,估計(jì)的概率;
(Ⅲ)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為“優(yōu)秀”,比賽成績(jī)低于分為“非優(yōu)秀”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了了解人們]對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在1565歲的人群中隨機(jī)調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
年齡 | |||||
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
45歲以下 | 45歲以上 | 總計(jì) | |
支持 | |||
不支持 | /td> | ||
總計(jì) |
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求圖中的值,并估計(jì)該班期中考試數(shù)學(xué)成績(jī)的眾數(shù);
(Ⅱ)從成績(jī)不低于90分的學(xué)生和成績(jī)低于50分的學(xué)生中隨機(jī)選取2人,求這2人成績(jī)均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);
(2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過84.81分(含84.81分)的人數(shù)估計(jì)有多少人?
(3)如果用抽取的考生成績(jī)的情況來估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過84.81分的考生人數(shù)為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com