【題目】如圖,在三棱錐中,平面平面,為等邊三角形,且,,分別為,的中點(diǎn).
(1)求證:平面;
(2)求直線和平面所成角的正切值;
(3)求三棱錐的體積.
【答案】(1)見解析(2)(3)
【解析】
(1)根據(jù)等腰三角形三線合一,可知.根據(jù)平面與平面垂直的性質(zhì)即可證明平面;
(2)連結(jié),由(1)可知是直線和平面所成角.根據(jù)三角形中線段關(guān)系,即可求得和,進(jìn)而求得即可.
(3)根據(jù)三棱錐體積,即可由三棱錐的體積公式求解.
(1)證明:∵,為的中點(diǎn),
∴,
∵平面平面,平面,
∴平面;
(2)連結(jié),由(1)得平面,
∴是直線和平面所成角,
在等腰直角三角形中,,所以,,
在等邊中,為的中點(diǎn),
∴,,
∵平面,平面,
∴,
∴,
即直線和平面所成角的正切值為;
(3)因?yàn)?/span>,.
所以等邊三角形的面積.
又因?yàn)?/span>平面,
所以,
所以三棱錐的體積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,為等邊三角形,邊長為2,為等腰直角三角形,,,,平面平面ABCD.
(1)證明:平面PAD;
(2)求平面PAD與平面PBC所成銳二面角的余弦值;
(3)棱PD上是否存在一點(diǎn)E,使得平面PBC?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),,直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。
(1)求曲線的方程;
(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年電商“雙十一”大戰(zhàn)即將開始.某電商為了盡快占領(lǐng)市場,搶占今年“雙十一”的先機(jī),對成都地區(qū)年齡在15到75歲的人群“是否網(wǎng)上購物”的情況進(jìn)行了調(diào)查,隨機(jī)抽取了100人,其年齡頻率分布表和使用網(wǎng)上購物的人數(shù)如下所示:(年齡單位:歲)
年齡段 | ||||||
頻率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
購物人數(shù) | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45歲為分界點(diǎn),根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“網(wǎng)上購物”與年齡有關(guān)?
年齡低于45歲 | 年齡不低于45歲 | 總計(jì) | |
使用網(wǎng)上購物 | |||
不使用網(wǎng)上購物 | |||
總計(jì) |
(2)若從年齡在,的樣本中各隨機(jī)選取2人進(jìn)行座談,記選中的4人中“使用網(wǎng)上購物”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)若與相交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線.
(1)求函數(shù)的極值;
(2)試確定曲線與直線的交點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形中,,,平面與半圓弧所在的平面垂直,點(diǎn)為半圓弧上異于的動(dòng)點(diǎn),為的中點(diǎn).
(1)求證:;
(2)當(dāng)三棱錐體積最大時(shí),求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),a∈R),以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ
(1)求直線l的普通方程及曲線C的直角坐標(biāo)方程;
(2)若直線l過點(diǎn)P(1,1)且與曲線C交于AB兩點(diǎn),求|PA|+|PB|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列前5項(xiàng)和為50, ,數(shù)列的前項(xiàng)和為, , .
(Ⅰ)求數(shù)列, 的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足, ,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com