【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足 ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.如y=x2是[﹣1,1]上的平均值函數(shù),0就是它的均值點.現(xiàn)有函數(shù)f(x)=x3+mx是區(qū)間[﹣1,1]上的平均值函數(shù),則實數(shù)m的取值范圍是

【答案】﹣3<m≤
【解析】解:函數(shù)f(x)=x3+mx是區(qū)間[﹣1,1]上的平均值函數(shù),故有x3+mx= 在(﹣1,1)內(nèi)有實數(shù)根.

由x3+mx= x3+mx﹣m﹣1=0,解得x2+m+1+x=0或x=1.

又1(﹣1,1)

∴x2+m+1+x=0的解為: ,必為均值點,即 ﹣3<m≤

<m≤

∴所求實數(shù)m的取值范圍是﹣3<m≤

所以答案是:﹣3<m≤

【考點精析】通過靈活運用函數(shù)的值,掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2x+2 sinxcosx+a,且當(dāng)x∈[0, ]時,f(x)的最小值為2.
(Ⅰ)求a 的值;
(Ⅱ)先將函數(shù)y=f (x) 的圖象上點的縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的 ,再將所得的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求方程g(x)=4在區(qū)間[0, ]上所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: (a>b>0)的右準(zhǔn)線的方程為x= ,左、右兩個焦點分別為F1 ),F(xiàn)2 ).

(1)求橢圓E的方程;
(2)過F1 , F2兩點分別作兩條平行直線F1C和F2B交橢圓E于C,B兩點(C,B均在x軸上方),且F1C+F2B等于橢圓E的短軸的長,求直線F1C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則其導(dǎo)函數(shù)f′(x)的圖象大致是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax﹣1(e為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>0時,若f(x)≥0對任意的x∈R恒成立,求實數(shù)a的值;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=nx﹣xn , x∈R,其中n∈N , 且n≥2.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)曲線y=f(x)與x軸正半軸的交點為P,曲線在點P處的切線方程為y=g(x),求證:對于任意的正實數(shù)x,都有f(x)≤g(x);
(Ⅲ)若關(guān)于x的方程f(x)=a(a為實數(shù))有兩個正實數(shù)根x1 , x2 , 求證:|x2﹣x1|< +2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“全面二孩”政策推行,我市將迎來生育高峰.今年新春伊始,泉城各醫(yī)院產(chǎn)科就已經(jīng)是一片忙碌至今熱度不減.衛(wèi)生部門進行調(diào)查統(tǒng)計期間發(fā)現(xiàn)各醫(yī)院的新生兒中,不少都是“二孩”;在市第一醫(yī)院,共有40個猴寶寶降生,其中10個是“二孩”寶寶;
(Ⅰ)從兩個醫(yī)院當(dāng)前出生的所有寶寶中按分層抽樣方法抽取7個寶寶做健康咨詢,
①在市第一醫(yī)院出生的一孩寶寶中抽取多少個?
②若從7個寶寶中抽取兩個寶寶進行體檢,求這兩個寶寶恰出生不同醫(yī)院且均屬“二孩”的概率;
(II)根據(jù)以上數(shù)據(jù),能否有85%的把握認為一孩或二孩寶寶的出生與醫(yī)院有關(guān)?

P(k≥k

0.40

0.25

0.15

0.10

k

0.708

1.323

2.072

2.706

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 存在互不相等實數(shù)a,b,c,d,有f(a)=f(b)=f(c)=f(d)=m.現(xiàn)給出三個結(jié)論:
⑴m∈[1,2);
⑵a+b+c+d∈[e﹣3+e﹣1﹣2,e﹣4﹣1),其中e為自然對數(shù)的底數(shù);
⑶關(guān)于x的方程f(x)=x+m恰有三個不等實根.
正確結(jié)論的個數(shù)為( 。
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( 。

A.4.5
B.6
C.7.5
D.9

查看答案和解析>>

同步練習(xí)冊答案