(本題分12分)
如圖,在長方體中,
,為中點.
(Ⅰ)求證:;
(Ⅱ)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由.
(Ⅲ)若二面角的大小為,求的長.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐中,平面,底面是菱形,點O是對角線與的交點,是的中點,.
(1) 求證:平面;
(2) 平面平面;
(3) 當四棱錐的體積等于時,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)如圖,在三棱錐中,面面,是正三角形, ,.
(Ⅰ)求證:;
(Ⅱ)求平面DAB與平面ABC的夾角的余弦值;
(Ⅲ)求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)如圖,在矩形ABCD中,AB=2BC,點M在邊CD上,點F在邊AB上,且,垂足為E,若將沿AM折起,使點D位于位置,連接,得四棱錐.
(1)求證:;(2)若,直線與平面ABCM所成角的大小為,求直線與平面ABCM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正三棱柱ABC—A1B1C1中,底面邊長及側(cè)棱長均為2,D是棱AB的中點,
(1)求證;
(2)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題共12分)如圖,四棱錐的底面是直角梯形,,,和是兩個邊長為的正三角形,,為的中點,為的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱ABC-中,,D,E分別為BC,的中點,的中點,四邊形是邊長為6的正方形.
(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分別是邊A1A2,A2A3上的一點,沿線段BC,CD,DB分別將△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一點A。
(Ⅰ)求證:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)如圖,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一點P在平面ABC內(nèi)的射影是AB中點M,二面角P—AC—B的大小為45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com