【題目】已知橢圓的中心在原點,對稱軸為坐標軸,橢圓與直線相切于點

(1)求橢圓的標準方程;

(2)若直線 與橢圓相交于、兩點(, 不是長軸端點),且以為直徑的圓過橢圓軸正半軸上的頂點,求證:直線過定點,并求出該定點的坐標.

【答案】(1) ;(2)答案見解析.

【解析】試題分析:(1)利用點在橢圓上及相切關系布列方程組,即可解得橢圓的標準方程;

(2)聯(lián)立方程易得: , 為直徑的圓過橢圓軸正半軸上的頂點,,即,經(jīng)檢驗得到結(jié)果.

試題解析:

法一(Ⅰ)由題意設橢圓的標準方程為,

在橢圓上,∴

∵橢圓與直線相切,∴,

由①②知,

故所求橢圓方程為

法二:設橢圓為 )則它在點處的切線為,它與表示同一直線,∴ ,,

故所求橢圓方程為.

(Ⅱ)設, ,聯(lián)立

,

因為以為直徑的圓過橢圓的上頂點

時,直線過定點與已知矛盾

時,直線過定點滿足

所以,直線過定點,定點坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為遞增的等差數(shù)列,,,,其中

1)求數(shù)列的通項公式;

2)設,求數(shù)列的前項和;

3)設,求使不等式對一切均成立的最大實數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·北京卷)如圖,在四棱錐PABCD中,平面PAD⊥平面ABCD,PAPD,PAPD,ABADAB1,AD2ACCD.

(1)求證:PD⊥平面PAB;

(2)求直線PB與平面PCD所成角的正弦值;

(3)在棱PA上是否存在點M,使得BM∥平面PCD?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若函數(shù)處的切線方程為,求, 的值;

(Ⅱ)若, 求函數(shù)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

1)求圓心C的坐標及半徑r的大;

2)已知不過原點的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;

3)從圓外一點向圓引一條切線,切點為M,O為坐標原點,且,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.

)求的取值范圍.

)記兩個極值點 ,且,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廟會是我國古老的傳統(tǒng)民俗文化活動,又稱“廟市”或 “節(jié)場”.廟會大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會上有豐富多彩的文化娛樂活動,如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎品,則“中獎”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學相約來到某廟會,每人均獲得砸一顆金蛋的機會.游戲開始前,甲、乙、丙、丁四位同學對游戲中獎結(jié)果進行了預測,預測結(jié)果如下:

甲說:“我或乙能中獎”; 乙說:“丁能中獎”;

丙說:“我或乙能中獎”; 丁說:“甲不能中獎”.

游戲結(jié)束后,這四位同學中只有一位同學中獎,且只有一位同學的預測結(jié)果是正確的,則中獎的同學是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于若數(shù)列滿足則稱這個數(shù)列為“數(shù)列”.

(Ⅰ)已知數(shù)列1, 是“數(shù)列”,求實數(shù)的取值范圍;

(Ⅱ)是否存在首項為的等差數(shù)列為“數(shù)列”,且其前項和使得恒成立?若存在,求出的通項公式;若不存在,請說明理由;

(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“數(shù)列”,數(shù)列不是“數(shù)列”,若試判斷數(shù)列是否為“數(shù)列”,并說明理由.

查看答案和解析>>

同步練習冊答案