分析 (1)由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,tanα,進(jìn)而利用二倍角的正切函數(shù)公式可求tan2α的值.
(2)由已知可求范圍-$\frac{π}{2}$<β-α<0,利用同角三角函數(shù)基本關(guān)系式可求sin(β-α)的值,由β=(β-α)+α,利用兩角和的余弦函數(shù)公式即可計(jì)算得解.
解答 解:(1)∵$sinα=\frac{{4\sqrt{3}}}{7},且0<β<α<\frac{π}{2}$.
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{1}{7}$,tanα=$\frac{sinα}{cosα}$=4$\sqrt{3}$,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{8\sqrt{3}}{47}$.
(2)∵$cos(β-α)=\frac{13}{14},且0<β<α<\frac{π}{2}$.
∴-$\frac{π}{2}$<β-α<0,可得:sin(β-α)=-$\sqrt{1-co{s}^{2}(β-α)}$=-$\frac{3\sqrt{3}}{14}$,
∴cosβ=cos[(β-α)+α]=cos(β-α)cosα-sin(β-α)sinα=$\frac{13}{14}×\frac{1}{7}-(-\frac{3\sqrt{3}}{14})×\frac{4\sqrt{3}}{7}$=$\frac{1}{2}$.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正切函數(shù)公式,兩角和的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $6\sqrt{2}$ | B. | $4\sqrt{3}$ | C. | 5 | D. | $5\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 | D. | 向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com