為R上的偶函數(shù),且當時,,則當時,___________.

x(x+1)

解析試題分析:因為,為R上的偶函數(shù),所以,。
又當時,,所以,當時,,故答案為。
考點:函數(shù)的奇偶性,函數(shù)的解析式。
點評:簡單題,利用轉化與化歸思想,將問題轉化成時函數(shù)值的“計算”問題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

設函數(shù)f(x)是定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-Cosx,則A=f(-)與b=f()的大小關系為____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知函數(shù)及其導數(shù),若存在,使得,則稱 的一個“巧值點”下列函數(shù)中,有“巧值點”的是           .(填上正確的序號)
,②,③,④,⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若函數(shù) 有兩個零點,則實數(shù)的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

函數(shù)的最小值是              

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

函數(shù)的所有零點之和為   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知,且方程無實數(shù)根,下列命題:
①方程也一定沒有實數(shù)根;
②若,則不等式對一切實數(shù)都成立;
③若,則必存在實數(shù),使
④若,則不等式對一切實數(shù)都成立.
其中正確命題的序號是          

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

函數(shù),若關于的方程有三個不同實根,則的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

函數(shù)的定義域為_____________.

查看答案和解析>>

同步練習冊答案