設(shè)函數(shù),.

(1)當(dāng)為自然對(duì)數(shù)的底數(shù))時(shí),求的極小值;

(2)討論函數(shù)零點(diǎn)的個(gè)數(shù).

 

(1)極小值;

(2)①當(dāng)時(shí),無零點(diǎn),

②當(dāng)時(shí),有且僅有個(gè)零點(diǎn),

③當(dāng)時(shí),有兩個(gè)零點(diǎn).

【解析】

試題分析:(1)要求的極小值,可以通過判斷其單調(diào)性從而求得其極小值,對(duì)求導(dǎo),可知,再通過列表即可得當(dāng)時(shí),取得極小值;(2)令,可得,因此要判斷函數(shù)的零點(diǎn)個(gè)數(shù),可通過畫出函數(shù)的草圖來判斷,同樣可以通過求導(dǎo)判斷函數(shù)的單調(diào)性來畫出函數(shù)圖象的草圖:,通過列表可得到的單調(diào)性,作出的圖象,進(jìn)而可得

①當(dāng)時(shí),無零點(diǎn),②當(dāng)時(shí),有且僅有個(gè)零點(diǎn),

③當(dāng)時(shí),有兩個(gè)零點(diǎn).

試題解析:(1)當(dāng)時(shí),,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719542064026986/SYS201411171954259528117622_DA/SYS201411171954259528117622_DA.022.png">,1分

,2分

,,3分

極小值

 

故當(dāng)時(shí),取得極小值; 6分

(2),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719542064026986/SYS201411171954259528117622_DA/SYS201411171954259528117622_DA.022.png">, 7分

,得,8分

設(shè),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719542064026986/SYS201411171954259528117622_DA/SYS201411171954259528117622_DA.022.png">.則的零點(diǎn)為的交點(diǎn), 9分

極大值

 

故當(dāng)時(shí),取得最大值,11分

作出的圖象,可得

①當(dāng)時(shí),無零點(diǎn), 12分

②當(dāng)時(shí),有且僅有個(gè)零點(diǎn),13分

③當(dāng)時(shí),有兩個(gè)零點(diǎn). 14分.

考點(diǎn):導(dǎo)數(shù)的運(yùn)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)已知函數(shù)是常數(shù)),且

(1)求的值;

(2)當(dāng)時(shí),判斷的單調(diào)性并證明;

(3)若不等式成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省湖州市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)設(shè)函數(shù).

(1)當(dāng)a=0.1,求f(1000)的值;

(2)若f(10)=10,求a的值;

(3)若對(duì)一切正實(shí)數(shù)x恒有,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省湖州市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù),則 ( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州市高二10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題10分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB=2,M, N分別為PA, BC的中點(diǎn).

(Ⅰ)證明:MN∥平面PCD;

(Ⅱ)求MN與平面PAC所成角的正切值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州市高二10月月考數(shù)學(xué)試卷(解析版) 題型:填空題

若兩條異面直線所成的角為60°,則稱這對(duì)異面直線為“黃金異面直線對(duì)”,在連接正方體各頂點(diǎn)的所有直線中,“黃金異面直線對(duì)”共有 對(duì).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州市高二10月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖正三棱柱的底面邊長(zhǎng)為,高為2,

一只螞蟻要從頂點(diǎn)沿三棱柱的表面爬到頂點(diǎn),若側(cè)面

緊貼墻面(不能通行),則爬行的最短路程是( )

A. B. C. 4 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省嘉興市高二上學(xué)期第一次階段測(cè)試數(shù)學(xué)試卷(解析版) 題型:填空題

有兩個(gè)相同的直三棱柱,高為,底面三角形的三邊長(zhǎng)分別為。用它們拼成一個(gè)三棱柱或四棱柱,在所有可能的情形中,全面積最小的是一個(gè)四棱柱,則的取值范圍是_________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年河南鄭州外國(guó)語學(xué)校高二上學(xué)期第一次月考理科數(shù)學(xué)卷(解析版) 題型:解答題

(本小題滿分12分)在數(shù)列中,

(1)設(shè)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案