若一球的半徑為r,作內(nèi)接于球的圓柱,則其圓柱側(cè)面積最大為(  )
A.2πr2
B.πr2
C.4πr2
D.πr2
A
設(shè)內(nèi)接圓柱的底面半徑為r1,高為t,
則S=2πr1t=2πr12=4πr1.
∴S=4π.
=0得.
此時S=4π·
=4π·r=2πr2,選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的單調(diào)增區(qū)間;
(2)當時,求函數(shù)在區(qū)間上的最小值;
(3)記函數(shù)圖象為曲線,設(shè)點,是曲線上不同的兩點,點為線段的中點,過點軸的垂線交曲線于點.試問:曲線在點處的切線是否平行于直線?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(1)若函數(shù)的圖象在處的切線與軸平行,求的值;
(2)若,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,△OAB是邊長為2的正三角形,記△OAB位于直線左側(cè)的圖形的面積為,則

(1)函數(shù)的解析式為_______;
(2)函數(shù)的圖像在點P(t0,f(t0))處的切線的斜率為,則t0=____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),其圖象與軸交于兩點,且x1x2
(1)求的取值范圍;
(2)證明:為函數(shù)的導函數(shù));
(3)設(shè)點C在函數(shù)的圖象上,且△ABC為等腰直角三角形,記,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)為實數(shù),函數(shù)
(1)求的單調(diào)區(qū)間與極值;
(2)求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三次函數(shù)的圖象如圖所示,則(      )
A.-1B.2C.-5D.-3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+1)=4g(x),且f′(x)=g′(x),f(5)=30,則g(4)= (    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)=的導函數(shù)是(    )
A.y′=3B.y′=2
C.y′=3+D.y′=3+

查看答案和解析>>

同步練習冊答案