已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當(dāng)x∈[,2]時(shí),函數(shù)f(x)=x+>恒成立.如果p或q為真命題,p且q為假命題.求c的取值范圍.
{c|0<c≤或c≥1}.
解析試題分析:由命題p知:0<c<1.
要使此式恒成立,則2>,即c>.
又由p或q為真,p且q為假知,
p、q必有一真一假,
當(dāng)p為真,q為假時(shí),c的取值范圍為0<c≤.
當(dāng)p為假,q為真時(shí),c≥1.
綜上,c的取值范圍為{c|0<c≤或c≥1}.
考點(diǎn):本題主要考查函數(shù)的性質(zhì),復(fù)合命題。
點(diǎn)評(píng):典型題,此類(lèi)題目具有一定綜合性,在以往的高考題中有所考查。關(guān)鍵是明確p或q為真命題,p且q為假命題所確定的p,q的真假情況是“一真一假”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
命題函數(shù)既有極大值又有極小值;
命題直線(xiàn)與圓有公共點(diǎn).
若命題“或”為真,且命題“且”為假,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
命題p:函數(shù)有零點(diǎn);
命題q:函數(shù)是增函數(shù),
若命題是真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)p:實(shí)數(shù)x滿(mǎn)足x2-4ax+3a2<0(其中a≠0),q:實(shí)數(shù)x滿(mǎn)足
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)
命題p:對(duì)任意實(shí)數(shù)都有恒成立;命題q :關(guān)于的方程有實(shí)數(shù)根.若“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
命題:函數(shù)在上是增函數(shù);命題:,使得 .
(1)若命題“且”為真,求實(shí)數(shù)的取值范圍;
(2)若命題“或”為真,“且”為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)命題:關(guān)于的不等式對(duì)于一切恒成立,命題:函數(shù)是增函數(shù),若為真,為假,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com