精英家教網 > 高中數學 > 題目詳情
(2013•浙江模擬)設雙曲線C:
x2
a2
-
y2
b2
=1
(a>b>0)的右焦點為F,左右頂點分別為A1,A2,過F且與雙曲線C的一條漸近線平行的直線與另一條漸近線相交于P,若P恰好在以A1A2為直徑的圓上,則雙曲線的離心率為
2
2
分析:由已知得出過F且與雙曲線C的一條漸近線平行的直線方程,與另一條漸近線方程聯立即可解得交點P的坐標,代入以A1A2為直徑的圓的方程,即可得出離心率e.
解答:解:假設過焦點F(c,0)與漸近線y=-
b
a
x
平行的直線y=-
b
a
(x-c)
與漸近線y=
b
a
x
相交,
聯立
y=-
b
a
(x-c)
y=
b
a
x
,解得
x=
c
2
y=
bc
2a
,得到P(
c
2
bc
2a
)
,
∵若P恰好在以A1A2為直徑的圓上x2+y2=a2,
(
c
2
)2
+(
bc
2a
)2
=a2,化為c2a2+b2c2=4a4,即c4=4a4,化為c2=2a2
e=
c
a
=
c2
a2
=
2

則雙曲線的離心率為
2

故答案為
2
點評:熟練掌握雙曲線的漸近線及離心率、直線的點斜式、圓的方程是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•浙江模擬)函數f(x)=Asin(ωx+φ)(A>0,ω>),|φ|<
π
2
)的部分圖象如圖示,則將y=f(x)的圖象向右平移
π
6
個單位后,得到的圖象解析式為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浙江模擬)在△ABC中,內角A,B,C對邊的邊長分別是a,b,c,已知C=
π3

(Ⅰ)若a=2,b=3,求△ABC的外接圓的面積;
(Ⅱ)若c=2,sinC+sin(B-A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浙江模擬)一個口袋中裝有2個白球和3個紅球,每次從袋中摸出兩個球,若摸出的兩個球顏色相同為中獎,否則為不中獎,則中獎的概率為
2
5
2
5

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浙江模擬)如圖,在四邊形ABCD中,AB⊥BC,AD⊥DC.若|
AB
|=a,|
AD
|=b,則
AC
BD
=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浙江模擬)已知sin(
π
4
-x)=
3
4
,且x∈(-
π
2
,-
π
4
)
,則cos2x的值為
-
3
7
8
-
3
7
8

查看答案和解析>>

同步練習冊答案