【題目】如圖所示的多面體,它的正視圖為直角三角形,側視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點.
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.
【答案】
(1)證明:由正視圖可知:平面VAB⊥平面ABCD
連接BD交AC于O點,連接EO,由已知得BO=OD,VE=EB
∴VD∥EO
又VD平面EAC,EO平面EAC
∴VD∥平面EAC;
(2)解:設AB的中點為P,則VP⊥平面ABCD,建立如圖所示的坐標系,
則 =(0,1,0)
設平面VBD的法向量為
∵
∴由 ,可得 ,∴可取 =( , ,1)
∴二面角A﹣VB﹣D的余弦值cosθ= =
【解析】(1)欲證VD∥平面EAC,根據直線與平面平行的判定定理可知只需證VD與平面EAC內一直線平行即可,而連接BD交AC于O點,連接EO,由已知易得VD∥EO,VD平面EAC,EO平面EAC,滿足定理條件;(2)設AB的中點為P,則VP⊥平面ABCD,建立坐標系,利用向量的夾角公式,可求二面角A﹣VB﹣D的余弦值.
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)若函數在處的切線平行于直線,求實數a的值;
(Ⅱ)判斷函數在區(qū)間上零點的個數;
(Ⅲ)在(Ⅰ)的條件下,若在上存在一點,使得成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數據的分組依次為[20,40),[40,60),[60,80),[80,100],若低于60分的人數是15人,則該班的學生人數是( )
A.45
B.50
C.55
D.60
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系內,已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當a∈( ,3)時,求直線AC的傾斜角α的取值范圍;
(2)當a=2時,求△ABC的BC邊上的高AH所在直線方程l.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若 且a2=bc,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若a∈R,則“關于x的方程x2+ax+1=0無實根”是“z=(2a﹣1)+(a﹣1)i(其中i表示虛數單位)在復平面上對應的點位于第四象限”的( )
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分又非必要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com