分析 根據(jù)不等式的關系,利用兩邊夾的思想得到f(x+6)=f(x)+3,然后進行轉化求解即可.
解答 解:根據(jù)對任意x恒有f(x+2)≥f(x)+1,得f(x+6)≥f(x+4)+1≥f(x+2)+1+1≥f(x)+1+1+1=f(x)+3,
由此得f(x)+3≤f(x+6)≤f(x)+3,即只能是f(x+6)=f(x)+3.
不難歸納出f(x+6k)=f(x)+3k(k為正整數(shù)),
所以f(2 014)=f(6×335+4)=f(4)+3×335=309+1 005=1314.
故答案為:1314.
點評 本題主要考查函數(shù)值的計算,根據(jù)不等式的關系求出f(x+6)=f(x)+3是解決本題的關鍵.,綜合性較強,難度較大.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 數(shù)列{An}是等差數(shù)列,數(shù)列{Bn}是等比數(shù)列 | |
B. | 數(shù)列{An}與{Bn}都是等差數(shù)列 | |
C. | 數(shù)列{An}是等比數(shù)列,數(shù)列{Bn}是等差數(shù)列 | |
D. | 數(shù)列{An}與{Bn}都是等比數(shù)列 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com