【題目】已知函數在處的切線斜率為2.
(Ⅰ)求的單調區(qū)間和極值;
(Ⅱ)若在上無解,求的取值范圍.
【答案】(Ⅰ) 單調遞增區(qū)間為,單調遞減區(qū)間為和 極小值為,極大值為 (Ⅱ)
【解析】試題分析:
(Ⅰ)結合導函數的解析式有,則,由得或.結合導函數的符號研究函數的性質可得函數的單調遞增區(qū)間為,單調遞減區(qū)間為和.則函數的極小值為,極大值為;
(Ⅱ)構造新函數,令,由題意可得在上恒成立.其中,研究其分母部分,記,由題意可得.分類討論:
若,則單調遞減.∴恒成立.
若,則在上單調遞增.而,故與已知矛盾,舍去.
綜上可知, .
試題解析:
解:(Ⅰ)∵ , ,
∴.
∴, .
令,解得或.
當變化時, 的變化情況如下表:
∴函數的單調遞增區(qū)間為,單調遞減區(qū)間為和.
∴函數的極小值為,極大值為;
(Ⅱ)令.
∵在上無解,
∴在上恒成立.
∵,記,
∵在上恒成立,
∴在上單調遞減.
∴.
若,則, ,
∴.
∴單調遞減.
∴恒成立.
若,則,存在,使得,
∴當時, ,即.
∴在上單調遞增.
∵,
∴在上成立,與已知矛盾,故舍去.
綜上可知, .
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,圓的圓心坐標為,半徑為2.以極點為原點,極軸為的正半軸,取相同的長度單位建立平面直角坐標系,直線的參數方程為(為參數).
(1)求圓的極坐標方程;
(2)設與圓的交點為, 與軸的交點為,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓()的左、右焦點分別為、,設點,在中, ,周長為.
(1)求橢圓的方程;
(2)設不經過點的直線與橢圓相交于、兩點,若直線與的斜率之和為,求證:直線過定點,并求出該定點的坐標;
(3)記第(2)問所求的定點為,點為橢圓上的一個動點,試根據面積的不同取值范圍,討論存在的個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高中三年級共有人,其中男生人,女生人,為調查該年級學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集位學生每周平均體育運動時間的樣本數據(單位:小時).
(Ⅰ)應收集多少位女生樣本數據?
(Ⅱ)根據這個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示).其中樣本數據分組區(qū)間為: , , , , , .估計該年組學生每周平均體育運動時間超過個小時的概率.
(Ⅲ)在樣本數據中,有位女生的每周平均體育運動時間超過個小時.請完成每周平均體育運動時間與性別的列聯表,并判斷是否有的把握認為“該年級學生的每周平均體育運動時間與性別有關”.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左、右有頂點分別是、,上頂點是,圓:的圓心到直線的距離是,且橢圓的右焦點與拋物線的焦點重合.
(Ⅰ)求橢圓的方程;
(Ⅱ)平行于軸的動直線與橢圓和圓在第一象限內的交點分別為、,直線、與軸的交點記為,.試判斷是否為定值,若是,證明你的結論.若不是,舉反例說明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班為了活躍元旦晚會氣氛,主持人請12位同學做一個游戲,第一輪游戲中,主持人將標有數字1到12的十二張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數字7到12的卡片的同學留下,其余的淘汰;第二輪將標有數字1到6的六張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數字4到6的卡片的同學留下,其余的淘汰;第三輪將標有數字1,2,3的三張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數字2,3的卡片的同學留下,其余的淘汰;第四輪用同樣的辦法淘汰一位同學,最后留下的這位同學獲得一個獎品.已知同學甲參加了該游戲.
(1)求甲獲得獎品的概率;
(2)設為甲參加游戲的輪數,求的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得=80, =20, =184, =720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中, ,a=-b,其中, 為樣本平均值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com