求與直線5x+12y-5=0平行,且距離等于1的直線方程.
考點(diǎn):兩條平行直線間的距離
專題:直線與圓
分析:設(shè)出直線方程,利用平行線之間的距離公式,即可1就求出直線方程.
解答: 解:設(shè)所求的直線方程為:5x+13y+m=0,
∵所求直線與直線5x+12y-5=0平行,且距離等于1,
|m+5|
52+122
=1

解得m=18或m=-8.
所求直線方程為:5x+13y+18=0或5x+12y-8=0.
點(diǎn)評(píng):本題考查平行線之間結(jié)論公式的應(yīng)用直線方程的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx-lnx(0<x<2π)的零點(diǎn)為x0有0<a<b<c<2π使f(a)f(b)f(c)>0則下列結(jié)論不可能成立的是( 。
A、x0<a
B、x0>b
C、x0>c
D、x0<π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a
b
,其中向量
a
=(m,sin(2x+
π
4
)),
b
=(1+sin(2x+
π
4
),1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(
π
8
,3).
(1)求實(shí)數(shù)m的值;     
(2)求函數(shù)f(x)的最小值及此時(shí)x的值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0),F(xiàn)1、F2分別是它的左、右焦點(diǎn),A(-1,0)是其左頂點(diǎn),且雙曲線的離心率為e=2.設(shè)過右焦點(diǎn)F2的直線l與雙曲線C的右支交于P、Q兩點(diǎn),其中點(diǎn)P位于第一象限內(nèi).
(1)求雙曲線的方程;
(2)若直線AP、AQ分別與直線x=
1
2
交于M、N兩點(diǎn),求證:MF2⊥NF2;
(3)是否存在常數(shù)λ,使得∠PF2A=λ∠PAF2恒成立?若存在,求出λ的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=2,BC=1,cosC=
3
4
.求:
(1)AB的值;      
(2)sin(A+C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為24,邊OA比OC大5.E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交x軸于D點(diǎn),過點(diǎn)D作DF⊥AE于點(diǎn)F.
(1)求OA、OC的長;
(2)求證:DF為⊙O′的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知200輛汽車通過某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示.
(1)時(shí)速在[60,70]的汽車大約有多少輛?
(2)若時(shí)速大于等于60為超速,則有多少車輛超速?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R+且a+b=1.
(1)求a2+b2的最小值;
(2)求(
1
a2
-1)(
1
b2
-1)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x,y的二元一次不等式組
x+2y≤4
x-y≤1
x+2≥0

(1)求函數(shù)u=3x-y的最大值和最小值;
(2)求函數(shù)z=x+2y+2的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案