【題目】已知函數(shù)為奇

函數(shù),且相鄰兩對(duì)稱軸間的距離為.

當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),

得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

【答案】(I);(II).

【解析】

試題分析:(I)通過(guò)三角恒等變換把化成,由題意得到周期,求得,根據(jù)函數(shù)的奇偶性和的范圍求出其值,得到,由得到的范圍,找到單調(diào)遞減區(qū)間,求出的范圍即可;(II)根據(jù)函數(shù)圖象的變換法則得到,由,求出的范圍.

試題解析:(I)由題意得:,

因?yàn)橄噜弮蓪?duì)稱軸間的距離為,所以,

又因?yàn)楹瘮?shù)為奇函數(shù),所以,且,所以,

故函數(shù)為.

要使單調(diào)減,需滿足,所以函數(shù)的減區(qū)間為.

II)由題意可得:

,,

,,即函數(shù)的值域?yàn)?/span>.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),直線,動(dòng)點(diǎn)到點(diǎn)的距離等于它到直線的距離.

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)是否存在過(guò)的直線,使得直線被曲線截得的弦恰好被點(diǎn)所平分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為, 成等差數(shù)列。

(1證明為等比數(shù)列,并求數(shù)列的通項(xiàng);

(2)設(shè),且,證明。

(3)在(2)小問(wèn)的條件下,若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1若曲線在點(diǎn)處的切線斜率為,求實(shí)數(shù)的值;

2有兩個(gè)零點(diǎn),求的取值范圍;

3當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中有高一新生500名,分成水平相同的兩類教學(xué)實(shí)驗(yàn),為對(duì)比教學(xué)效果,現(xiàn)用分層抽樣的方法從兩類學(xué)生中分別抽取了40人,60人進(jìn)行測(cè)試

1)求該學(xué)校高一新生兩類學(xué)生各多少人?

2)經(jīng)過(guò)測(cè)試,得到以下三個(gè)數(shù)據(jù)圖表:

175分以上兩類參加測(cè)試學(xué)生成績(jī)的莖葉圖

2100名測(cè)試學(xué)生成績(jī)的頻率分布直方圖

下圖表格:100名學(xué)生成績(jī)分布表:

先填寫(xiě)頻率分布表中的六個(gè)空格,然后將頻率分布直方圖(圖2)補(bǔ)充完整;

該學(xué)校擬定從參加考試的79分以上(含79分)的類學(xué)生中隨機(jī)抽取2人代表學(xué)校參加市比賽,求抽到的2人分?jǐn)?shù)都在80分以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在高為2的梯形中, , , ,過(guò)、分別作, ,垂足分別為、。已知,將梯形沿同側(cè)折起,得空間幾何體,如圖2。

(1)若,證明:

(2)若,證明: ;

(3)在(1),(2)的條件下,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),左、右焦點(diǎn)分別在軸上,離心率為,在其上有一動(dòng)點(diǎn),到點(diǎn)距離的最小值是1.過(guò)作一個(gè)平行四邊形,頂點(diǎn)都在橢圓上,如圖所示.

)求橢圓的方程;

)判斷能否為菱形,并說(shuō)明理由.

)當(dāng)的面積取到最大值時(shí),判斷的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)是一個(gè)水平放置的正三棱柱, 是棱的中點(diǎn),正三棱柱的主視圖如圖(2).

(1)圖(1)中垂直于平面的平面有哪幾個(gè)(直接寫(xiě)出符合要求的平面即可,不必說(shuō)明或證明)

(2)求正三棱柱的體積;

(3)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)字0、2、3、4、6按下列要求組數(shù)、計(jì)算:

(1)能組成多少個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)?

(2)可以組成多少個(gè)可以被3整除的沒(méi)有重復(fù)數(shù)字的三位數(shù)?

(3)求144的所有正約數(shù)的和.

(注:每小題結(jié)果都寫(xiě)成數(shù)據(jù)形式)

查看答案和解析>>

同步練習(xí)冊(cè)答案