在三人兵乓球?qū)官愔,甲、乙、丙三名選手進(jìn)行單循環(huán)賽(即每?jī)扇吮荣愐粓?chǎng)),共賽三場(chǎng),每場(chǎng)比賽勝者得1分,輸者得0分,沒(méi)有平局;在每一場(chǎng)比賽中,甲勝乙的概率為
1
3
,甲勝丙的概率為
1
4
,乙勝丙的概率為
1
3

(1)求甲獲得小組第一且丙獲得小組第二的概率;
(2)求三人得分相同的概率;
(3)求甲不是小組第一的概率.
(1)甲獲小組第一且丙獲小組第二為事件A
則事件A成立時(shí),甲勝乙,甲勝丙,丙勝乙
由在每一場(chǎng)比賽中,甲勝乙的概率為
1
3
,甲勝丙的概率為
1
4
,乙勝丙的概率為
1
3

則P(A)=
1
3
×
1
4
×
2
3
=
1
18

(2)設(shè)三場(chǎng)比賽結(jié)束后,三人得分相同為事件B
則每人勝一場(chǎng)輸兩場(chǎng),有以下兩種情形:
甲勝乙,乙勝丙,丙勝甲概率P=
1
3
×
1
4
×
3
4
=
1
12
;
甲勝丙,丙勝乙,乙勝甲概率P=
1
4
×
2
3
×
2
3
=
1
9

故三人得分相同的概率為P(B)=
1
12
+
1
9
=
7
36

(3)設(shè)甲不是小組第一的事件C,甲是小組第一的事件D
則C,D為對(duì)立事件,
∵D成立事,甲勝乙,甲勝丙
故P(D)=
1
3
×
1
4
=
1
12
;
P(C)=1-P(D)=1-
1
12
=
11
12
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三人兵乓球?qū)官愔,甲、乙、丙三名選手進(jìn)行單循環(huán)賽(即每?jī)扇吮荣愐粓?chǎng)),共賽三場(chǎng),每場(chǎng)比賽勝者得1分,輸者得0分,沒(méi)有平局;在每一場(chǎng)比賽中,甲勝乙的概率為
1
3
,甲勝丙的概率為
1
4
,乙勝丙的概率為
1
3

(1)求甲獲得小組第一且丙獲得小組第二的概率;
(2)求三人得分相同的概率;
(3)求甲不是小組第一的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在三人兵乓球?qū)官愔,甲、乙、丙三名選手進(jìn)行單循環(huán)賽(即每?jī)扇吮荣愐粓?chǎng)),共賽三場(chǎng),每場(chǎng)比賽勝者得1分,輸者得0分,沒(méi)有平局;在每一場(chǎng)比賽中,甲勝乙的概率為數(shù)學(xué)公式,甲勝丙的概率為數(shù)學(xué)公式,乙勝丙的概率為數(shù)學(xué)公式
(1)求甲獲得小組第一且丙獲得小組第二的概率;
(2)求三人得分相同的概率;
(3)求甲不是小組第一的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省成都市石室中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在三人兵乓球?qū)官愔,甲、乙、丙三名選手進(jìn)行單循環(huán)賽(即每?jī)扇吮荣愐粓?chǎng)),共賽三場(chǎng),每場(chǎng)比賽勝者得1分,輸者得0分,沒(méi)有平局;在每一場(chǎng)比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為
(1)求甲獲得小組第一且丙獲得小組第二的概率;
(2)求三人得分相同的概率;
(3)求甲不是小組第一的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市高三三月調(diào)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在三人兵乓球?qū)官愔,甲、乙、丙三名選手進(jìn)行單循環(huán)賽(即每?jī)扇吮荣愐粓?chǎng)),共賽三場(chǎng),每場(chǎng)比賽勝者得1分,輸者得0分,沒(méi)有平局;在每一場(chǎng)比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為
(1)求甲獲得小組第一且丙獲得小組第二的概率;
(2)求三人得分相同的概率;
(3)求甲不是小組第一的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案