.(本題滿分15分)橢圓離心率為,且過點.
橢圓
已知直線與橢圓交于A、B兩點,與軸交于點,若,
求拋物線的標準方程。

。
本試題主要是考查了橢圓方程的求解以及直線與橢圓的位置關系的運用,和拋物線方程的求解綜合問題。
(1)代入橢圓方程中可知參數(shù)啊,a,b的值,進而得到結(jié)論。
(2)設的方程為直線與拋物線C切點為
,,解得,然后結(jié)合向量關系,直線與橢圓聯(lián)立方程組得到結(jié)論。
解. ……..1分
…..3分
點P()在橢圓

……..6分
的方程為直線與拋物線C切點為
,

解得,
……….8分
代入橢圓方程并整理得:
……..9分
方程(1)的兩個根,
,,……….11分
…….13分
,解得
……..15分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

,點,動點滿足,則點的軌跡方程是  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C的長軸長為2,兩準線間的距離為16,則橢圓的離心率e為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設橢圓的離心率為=,點是橢圓上的一點,且點到橢圓兩焦點的距離之和為4.
(1)求橢圓的方程;
(2)橢圓上一動點關于直線的對稱點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)已知A、B是橢圓與坐標軸正半軸的兩交點,在第一象限的橢圓弧上求一點P,使四邊形OPAB的面積最大.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓上一點M到直線x+2y-10=0的距離的最小值為(    )
A.2B.C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

從橢圓 上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB//OP,,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是把坐標平面上的點的橫坐標伸長為原來的4倍,縱坐標伸長為原來的3倍的伸壓變換,則圓的作用下的新曲線的方程是       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓長軸上有一點到兩個焦點之間的距離分別為:3+2,3-2
(1)求橢圓的方程;
(2)如果直線x=t(teR)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線
BD的交點K必在一條確定的雙曲線上;
(3)過點Q(1,0 )作直線l(與x軸不垂直)與橢圓交于M,N兩點,與y軸交于點R,、若
,求證:為定值.

查看答案和解析>>

同步練習冊答案