已知直三棱柱中,,的中點(diǎn)。(Ⅰ)求點(diǎn)C到平面的距離;(Ⅱ)若,求二面角的平面角的余弦值。
:(Ⅰ)(Ⅱ)
:(Ⅰ)因,D為AB的中點(diǎn),得。又所以到平面的距離為
(Ⅱ):如答(19)圖1,取的中點(diǎn),連接,則又由(Ⅰ)知 面 , 為所求的二面角的平面角。
在面上的射影,又已知 由三垂線定理的逆定理得從而,都與互余,因此,所以,因此,
從而所以在中,
【考點(diǎn)定位】本小題主要考查立體幾何的相關(guān)知識(shí),具體涉及到線面垂直的關(guān)系、二面角的求法及空間向量在立體幾何中的應(yīng)用,解決此類問題的關(guān)鍵是熟悉幾何體的結(jié)構(gòu)特征,熟練進(jìn)行線線垂直與線面垂直的轉(zhuǎn)化,主要考查學(xué)生的空間想象能力與推理論證能力.本題可以利用空間向量來解題從而降低了題目的難度
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖所示,在長(zhǎng)方體中,,,為棱上一點(diǎn).

(1)若,求異面直線所成角的正切值;
(2)是否存在這樣的點(diǎn)使得平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,均是邊長(zhǎng)為2的等邊三角形,且它們所在平面互相垂直,,.
(1)    求證: ||
(2)    求二面角的余弦值。.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

把正方形以邊所在直線為軸旋轉(zhuǎn)到正方形,其中分別為的中點(diǎn).
(1)求證:∥平面
(2)求證:平面;
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是不同的直線,是不同的平面,則下列結(jié)論錯(cuò)誤的是(    )
A.若
B.若,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面. 考察下列命題,其中真命題是
A.B.,
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖,在四棱錐中,底面為矩形,平面⊥平面,,,的中點(diǎn),
求證:(1)∥平面;(2)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

把長(zhǎng)、寬各為4、3的長(zhǎng)方形ABCD沿對(duì)角線AC折成直二面角,求頂點(diǎn)B和D的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正方體ABCD-A1B1C1D1中,求證:AC1BD.

查看答案和解析>>

同步練習(xí)冊(cè)答案