設(shè)函數(shù)f(x)=sinωx+cosωx(ω>0)的周期是π.

(1)求ω的值,并畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;

(2)函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到?

解:(1)函數(shù)可化為f(x)=sin(ωx+).                         

∵T=π,∴=π,即ω=2.

∴f(x)=sin(2x+).                                        

列表:

x

0

π

y

1

0

-1

0

圖象略.                                                 

(2)方法一:將y=sinx(x∈R)的圖象上所有的點(diǎn)向左平行移動(dòng)個(gè)單位長度,得到函數(shù)y=sin(x+)(x∈R)的圖象;                                  

再把后者所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),就得到函數(shù)

y=sin(2x+)(x∈R)的圖象.                               

方法二:將y=sinx(x∈R)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到函數(shù)y=sin2x(x∈R)的圖象;                                    

再把所得圖象上所有的點(diǎn)向左平行移動(dòng)個(gè)單位長度,從而得到函數(shù)y=sin(2x+)(x∈R)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•安徽模擬)設(shè)函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)記△ABC的內(nèi)角A、B、C的對(duì)邊長分別為a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,給出以下四個(gè)論斷:
①它的圖象關(guān)于直線x=
π
12
對(duì)稱;     
②它的圖象關(guān)于點(diǎn)(
π
3
,0)
對(duì)稱;
③它的周期是π;                   
④在區(qū)間[0,
π
6
)
上是增函數(shù).
以其中兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出你認(rèn)為正確的命題:
條件
①③
①③
結(jié)論
;(用序號(hào)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分圖象如圖所示.
(1)求f(x)的表達(dá)式;
(2)若f(x)•f(-x)=
1
4
,x∈(
π
4
,
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
)
,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期為
3

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若將y=f(x)的圖象向左平移
π
2
個(gè)單位可得y=g(x)的圖象,求不等式g(x)≥2
3
的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案