已知,Sn是數(shù)列{an}的前n項(xiàng)和( )
A.都存在
B.都不存在
C.存在,不存在
D.不存在,存在
【答案】分析:分別計(jì)算,可知都存在.
解答:解:由題意,==0,==20112,
都存在
故選A.
點(diǎn)評(píng):本題考查數(shù)列的極限,解題的關(guān)鍵是計(jì)算出,所以中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•bx的圖象過(guò)點(diǎn)A(0,
1
16
),B(2,
1
4
).
(I)求函數(shù)f(x)的表達(dá)式;
(II)設(shè)an=log2f(n),n∈N*,Sn是數(shù)列{an}的前n項(xiàng)和,求Sn
(III)在(II)的條件下,若bn=an(
1
2
)
n
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•青浦區(qū)二模)[理科]定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng){an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱(chēng)y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N*).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿(mǎn)足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)已知數(shù)列{an} (n∈N*)是首項(xiàng)為a,公比為q≠0的等比數(shù)列,Sn是數(shù)列{an} 的前n項(xiàng)和,已知12S3,S6,S12-S6成等比數(shù)列.
(Ⅰ)當(dāng)公比q取何值時(shí),使得a1,2a7,3a4成等差數(shù)列;
(Ⅱ)在(Ⅰ)的條件下,求Tn=a1+2a4+3a7+…+na3n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0118 期中題 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{a}的前n項(xiàng)和,對(duì)任意n∈N*,有2Sn=2pan2+pan-p(p∈R)。
(Ⅰ)求常數(shù)p的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)記bn=Sn+λan,(n∈N*)若數(shù)列{bn}從第二項(xiàng)起每一項(xiàng)都比它的前一項(xiàng)大,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案