F1、F2是雙曲線
x2
4a2
-
y2
a2
=1(a>0)
的兩個(gè)焦點(diǎn),P為雙曲線上一點(diǎn),
PF1
PF2
=0
,且△F1PF2的面積為1,則a的值是
1
1
分析:先根據(jù)雙曲線方程得到a和c的表示式,再根據(jù)雙曲線定義得到|m-n|=2a,結(jié)合∠F1PF2=90°可得m2+n2=(2c)2,求出|PF1|與|PF2|的積,代入求三角形面積的公式,即可得到結(jié)論,
解答:解:∵F1、F2是雙曲線
x2
4a2
-
y2
a2
=1(a>0)
的兩個(gè)焦點(diǎn),
設(shè)雙曲線的點(diǎn)P到兩個(gè)焦點(diǎn)的距離分別是m,n
∴根據(jù)雙曲線的定義知m-n=4a,①
∵P為雙曲線上一點(diǎn),
PF1
PF2
=0

∴m2+n2=20a2  ②
把①平方減去②得,mn=2a2
∵△F1PF2的面積為1,
1
2
×2a2=1

∴a=1
故答案為:1
點(diǎn)評:本題主要考查雙曲線的基本性質(zhì).在涉及到與焦點(diǎn)有關(guān)的題目時(shí),一般都用定義求解,考查轉(zhuǎn)化的數(shù)學(xué)思想,查考生的綜合運(yùn)用能力及運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2是雙曲線
x2
4
-
y2
3
=1
的兩個(gè)焦點(diǎn),過點(diǎn)F2作x軸的垂線交雙曲線于A、B兩點(diǎn),則△F1AB的周長為
14
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),過F1且垂直于x軸的直線與雙曲線的左支交于A,B兩點(diǎn),若△ABF2是正三角形,試求該雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn),PQ是經(jīng)過F1且垂直于x軸的雙曲線的弦.如果∠PF2Q=90°,則雙曲線的離心率是
1+
2
1+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是雙曲線x2-
y24
=1
的兩個(gè)焦點(diǎn),過F1作垂直于x軸的直線與雙曲線相交,一個(gè)交點(diǎn)為P,則|PF2|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線
x24
-y2=1
的左右焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=90°,則點(diǎn)P到x軸的距離為
 

查看答案和解析>>

同步練習(xí)冊答案