【題目】重慶朝天門批發(fā)市場(chǎng)某服裝店試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于成本的40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù),且時(shí),;時(shí),.

1)求一次函數(shù)的表達(dá)式;

2)若該服裝店獲得利潤(rùn)為W元,試寫出利潤(rùn)與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),服裝店可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

【答案】12,銷售價(jià)定為每件84元時(shí),可獲得利潤(rùn)最大,最大利潤(rùn)是864.

【解析】

(1)根據(jù)題意得,銷售單價(jià),銷售單價(jià)等于,獲利不得高于成本的,則銷售單價(jià);再利用待定系數(shù)法把時(shí),時(shí),分別代入一次函數(shù)中,求出,即可得出關(guān)系式;

(2)根據(jù)題目意思,表示出銷售額和成本,然后表示出利潤(rùn)=銷售額-成本,整理后根據(jù)的取值范圍求出最大利潤(rùn).

1

由題意得:解得:

所以一次函數(shù)的解析式為:

2)銷售額:元,

成本:

,

當(dāng)時(shí),W取得最大值,最大值是:(元)

即銷售價(jià)定為每件84元時(shí),可獲得最大利潤(rùn)是864.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖像與x軸交于,與y軸交于C點(diǎn),且是等腰三角形.

1)求的解析式;

2)在A、B之間的拋物線段上是否存在異于A、B的點(diǎn)D,使的面積相等?若存在,求D點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平行四邊形中,點(diǎn)邊的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且

(1)求證; 平面平面

(2)若平面和平面的交線為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿足:①對(duì)一切恒有;②對(duì)一切恒有;③當(dāng)時(shí),,且;④若對(duì)一切(其中),不等式恒成立.

(1)的值;

(2)證明:函數(shù)上的遞增函數(shù);

(3)求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的有______.

.

②已知,則.

③函數(shù)的圖象與函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

④函數(shù)的遞增區(qū)間為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,動(dòng)點(diǎn)與兩定點(diǎn)連線的斜率之積為,記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)若過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),曲線上是否存在點(diǎn)使得四邊形為平行四邊形?若存在,求直線的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,若以,為焦點(diǎn)的雙曲線的漸近線經(jīng)過(guò)點(diǎn),則該雙曲線的離心率為

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案