【題目】下列說法錯(cuò)誤的是

A若直線平面,直線平面,則直線不一定平行于直線

B若平面不垂直于平面,則內(nèi)一定不存在直線垂直于平面

C若平面平面,則內(nèi)一定不存在直線平行于平面

D若平面平面,平面平面,,則一定垂直于平面

【答案】C

【解析】

試題分析:A若直線a平面α,直線b平面α,則a,b平行或相交或是異面直線,則直線a不一定平行于直線b正確,故A正確,

Bα內(nèi)存在直線垂直于平面β,則根據(jù)面面垂直的判定定理得α⊥β,與平面α不垂直于平面β矛盾,故若平面α不垂直于平面β,則α內(nèi)一定不存在直線垂直于平面β正確,故B錯(cuò)誤,

C若平面α⊥平面β,則α內(nèi)當(dāng)直線與平面的交線平行時(shí),直線即與平面β平行,故C錯(cuò)誤,

D若平面α⊥平面v,平面β⊥平面v,α∩β=l,則根據(jù)面面垂直的性質(zhì)得l一定垂直于平面v,故D正確

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),證明:函數(shù)不是奇函數(shù);

(2)判斷函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;

(3)若是奇函數(shù),且時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),在平面直角坐標(biāo)系中,已知向,向,動點(diǎn)的軌跡為.

1求軌跡的方程,并說明該方程所表示曲線的形狀;

2已知,證明存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡恒有兩個(gè)交點(diǎn),且為坐標(biāo)原點(diǎn)),并求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn).

(1)求橢圓方程;

(2)設(shè)不過原點(diǎn)的直線,與該橢圓交于兩點(diǎn),直線的斜率依次為,滿足,試問:當(dāng)變化時(shí),是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某學(xué)校的800名男生中隨機(jī)抽取50名測量身高,被測學(xué)生身高全部介于155和195之間,將測量結(jié)果按如下方式分成八組:第一組,第二組,,第八組,下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4人.

(1)求第七組的頻率;

(2)估計(jì)該校的800名男生的身高的眾數(shù)以及身高在180以上(含180)的人數(shù);

(3)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,事件,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1判斷的奇偶性并用定義證明;

2判斷的單調(diào)性并有合理說明;

3當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】編號1~15的小球共15個(gè),求總體號碼的平均值,試驗(yàn)者從中抽3個(gè)小球,以它們的平均數(shù)估計(jì)總體平均數(shù),以編號2為起點(diǎn),用系統(tǒng)抽樣法抽3個(gè)小球,則這3個(gè)球的編號平均數(shù)是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費(fèi)用是每日92元,根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金元只取整數(shù),用元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入-管理費(fèi)用)

(1)求函數(shù)的解析式及其定義域;

(2)當(dāng)租金定為多少時(shí),才能使一天的純收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若g(x+2)=2x+3,則g(3)的值是( )
A.9
B.7
C.5
D.3

查看答案和解析>>

同步練習(xí)冊答案