分析 (Ⅰ)當(dāng)a=1時(shí),利用絕對(duì)值的幾何意義,分類討論,即可解不等式f(x)+f(2x+3)≥5;
(Ⅱ)設(shè)x-a=t(t≠0),則$\frac{f(x)}{g(x)}$=$\frac{|t|}{{t}^{2}+1}$=$\frac{1}{|t|+\frac{1}{|t|}}$≤$\frac{1}{2}$,即可求m的取值范圍.
解答 解:(Ⅰ)當(dāng)a=1時(shí),不等式f(x)+f(2x+3)≥5,可化為|x-1|+|2x+2|≥5,
x<-1時(shí),-x+1-2x-2≥5,解得x≤-2,∴x≤-2;
-1≤x≤1時(shí),-x+1+2x+2≥5,解得x≥2,∴無解;
x>1時(shí),x-1+2x+2≥5,解得x≥$\frac{4}{3}$,∴x≥$\frac{4}{3}$;
∴不等式的解集為{x|x≤-2或x≥$\frac{4}{3}$};
(Ⅱ)設(shè)x-a=t(t≠0),則$\frac{f(x)}{g(x)}$=$\frac{|t|}{{t}^{2}+1}$=$\frac{1}{|t|+\frac{1}{|t|}}$≤$\frac{1}{2}$,
∵$\frac{f(x)}{g(x)}$<m恒成立,∴m>$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查絕對(duì)值的幾何意義,考查分類討論的數(shù)學(xué)思想,考查學(xué)生轉(zhuǎn)化問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 3 | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 7 | 14 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 17 | x | 4 | 2 |
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 4 |
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com