19.已知等比數(shù)列{an}的首項(xiàng)a1、公比q,且${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}為遞增數(shù)列.若${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

分析 (1)根據(jù)等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式求得首項(xiàng)a1、公比q,然后數(shù)列{an}的通項(xiàng)公式;注意需要分類(lèi)討論;
(2)利用(1)中求得的數(shù)列{an}的通項(xiàng)公式推知數(shù)列{bn}的通項(xiàng)公式,然后根據(jù)拆項(xiàng)法推知數(shù)列{cn}的通項(xiàng)公式,則易求數(shù)列{cn}的前n項(xiàng)和Tn

解答 解:(1)因?yàn)榈缺葦?shù)列{an}的首項(xiàng)a1、公比q,且${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$,
所以①當(dāng)q=1時(shí),an=$\frac{3}{2}$;
②當(dāng)q≠1時(shí),$\left\{\begin{array}{l}{{a}_{1}{q}^{2}=\frac{3}{2}}\\{\frac{{a}_{1}(1-{q}^{3})}{1-q}=\frac{9}{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=6}\\{q=-\frac{1}{2}}\end{array}\right.$,
則an=6×(-$\frac{1}{2}$)n-1
綜上所述,an=$\left\{\begin{array}{l}{\frac{3}{2}(q=1)}\\{6×(-\frac{1}{2})^{n-1}(q≠1)}\end{array}\right.$;
(2)因?yàn)?{b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}為遞增數(shù)列,
所以an=6×(-$\frac{1}{2}$)n-1
所以a2n+1=6×($\frac{1}{4}$)n
所以${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$=2n,則${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$).
所以Tn=$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{1}{4}$(1-$\frac{1}{n+1}$)=$\frac{n}{4(n+1)}$.

點(diǎn)評(píng) 本題主要考查數(shù)列通項(xiàng)公式和前n項(xiàng)和的求解,利用拆項(xiàng)法和裂項(xiàng)相消法求和法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知在同一平面上的三個(gè)單位向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,它們相互之間的夾角均為120°,且$|{k\overrightarrow a+2\overrightarrow b+\overrightarrow c}|-m>0$恒成立,則實(shí)數(shù)m的取值范圍是-$\frac{\sqrt{3}}{2}$<$m<\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若圓x2+y2-2x-4y-1=0上存在兩點(diǎn)關(guān)于直線2ax+by-2=0(a>0,b>0)對(duì)稱(chēng),則$\frac{1}{a}+\frac{4}$的最小值為(  )
A.5B.7C.$2\sqrt{2}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.季節(jié)性服裝當(dāng)季節(jié)即將來(lái)臨時(shí),價(jià)格呈上升趨勢(shì),設(shè)某服裝開(kāi)始時(shí)定價(jià)為10元,并且每周(7天)漲價(jià)2元,5周后開(kāi)始保持20元的價(jià)格平穩(wěn)銷(xiāo)售;10周后當(dāng)季節(jié)即將過(guò)去時(shí),平均每周削價(jià)2元,直到16周末,該服裝已不再銷(xiāo)售.試建立價(jià)格P與周次t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a>0,x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ y≥a(x-3)\end{array}\right.$,若z=3x+2y的最小值為1,則a=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.等差數(shù)列{an}的公差d=-1,a1=2,則a6=( 。
A.-3B.3C.1D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)命題p:2x+y=3,q:x-y=6,若p∧q為真命題,則x=3,y=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.1+3+32+…+3101被4除所得的余數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知復(fù)數(shù)z=$\frac{(-1+3i)(1-i)-(1+3i)}{i}$,ω=z+ai(a∈R),當(dāng)|$\frac{ω}{z}$|≤$\sqrt{2}$時(shí),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案