【題目】下列有關(guān)命題的說法正確的是( )
A. ,使得成立.
B. 命題:任意,都有,則:存在,使得.
C. 命題“若且,則且”的逆命題為真命題.
D. 若數(shù)列是等比數(shù)列,則是的必要不充分條件.
【答案】D
【解析】
對于A選項,方程無解,由此判斷命題不成立.對于B選項,用全稱命題的否定是特稱命題來判斷是否正確.對于C選項,寫出逆命題后判斷命題是否為真命題.對于D選項,利用等比數(shù)列的性質(zhì),并舉特殊值來判斷命題是否為真命題.
由,得,其判別式,此方程無解,故A選項錯誤.對于B選項,全稱命題的否定是特稱命題,應(yīng)改為,故B選項錯誤.對于C選項,原命題的逆命題是“若且,則且”,如,滿足且但不滿足且,所以為假命題.對于D選項,若,為等比數(shù)列,,但;另一方面,根據(jù)等比數(shù)列的性質(zhì),若,則.所以是的必要不充分條件.故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于隨機變量及分布的說法正確的是( )
A.拋擲均勻硬幣一次,出現(xiàn)正面的次數(shù)是隨機變量
B.某人射擊時命中的概率為0.5,此人射擊三次命中的次數(shù)服從兩點分布
C.離散型隨機變量的分布列中,隨機變量取各個值的概率之和可以小于1
D.離散型隨機變量的各個可能值表示的事件是彼此互斥的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,已知曲線C1:(α為參數(shù)),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρcos =-,曲線C3:ρ=2sin θ.
(1)求曲線C1與C2的交點M的直角坐標;
(2)設(shè)點A,B分別為曲線C2,C3上的動點,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解居民的用電情況,某地供電局抽查了該市若干戶居民月均用電量(單位:),并將樣本數(shù)據(jù)分組為,,,,,, ,其頻率分布直方圖如圖所示.
(1)若樣本中月均用電量在的居民有戶,求樣本容量;
(2)求月均用電量的中位數(shù);
(3)在月均用電量為,,,的四組居民中,用分層隨機抽樣法抽取戶居民,則月均用電量在的居民應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1 000位上網(wǎng)購物者的年齡情況如圖所示.
(1)已知[30,40),[40,50),[50,60)三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求的值;
(2)該電子商務(wù)平臺將年齡在[30,50)內(nèi)的人群定義為高消費人群,其他年齡段的人群定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1 000位上網(wǎng)購物者中抽取10人,并在這10人中隨機抽取3人進行回訪,求此3人獲得代金券總和(單位:元)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,,,,E為AD中點,點O,F分別為BE,DE的中點,將沿BE折起到的位置,使得平面平面BCDE(如圖).
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)側(cè)棱上是否存在點P,使得平面?若存在,求出的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4,極坐標與參數(shù)方程
已知在平面直角坐標系中,為坐標原點,曲線(為參數(shù)),在以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同單位長度的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)直線與軸的交點,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有n名學(xué)生,在一次數(shù)學(xué)測試后,老師將他們的分數(shù)(得分取正整數(shù),滿分為100分),按照,,,,的分組作出頻率分布直方圖(如圖1),并作出樣本分數(shù)的莖葉圖(如圖2)(圖中僅列出了得分在,的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中x、y的值;
(2)分數(shù)在的學(xué)生中,男生有2人,現(xiàn)從該組抽取三人“座談”,求至少有兩名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC的角平分線AD的延長線交它的外接圓于點
(Ⅰ)證明:△ABE∽△ADC;
(Ⅱ)若△ABC的面積,求的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com