18.若點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}x+y-7≤0\\ x-2y+5≤0\\ 2x-y+1≥0\end{array}\right.$所確定的區(qū)域內(nèi),則z=y-x的最大值為3.

分析 ①畫可行域;②z為目標(biāo)函數(shù)的縱截距;③畫直線z=x-y.平移可得直線過A或B時(shí)z有最值.

解答 解:畫不等式組$\left\{\begin{array}{l}x+y-7≤0\\ x-2y+5≤0\\ 2x-y+1≥0\end{array}\right.$的可行域如圖,
畫直線z=y-x,
平移直線z=y-x過點(diǎn)A時(shí)z有最大值;由$\left\{\begin{array}{l}{x+y-7=0}\\{2x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$,A(2,5),
z=y-x的最大值為:3.
故答案為:3.

點(diǎn)評(píng) 本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知(1+3x)n的展開式中,末三項(xiàng)的二項(xiàng)式系數(shù)的和等于121,求展開式中二項(xiàng)式系數(shù)的最大的項(xiàng)及所有項(xiàng)的系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.角A是△ABC的一個(gè)內(nèi)角,若函數(shù)y=cos(2x+A)的圖象的一個(gè)對(duì)稱中心為($\frac{π}{3}$,0),則A=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.從兩名老師和四名學(xué)生中選出四人排成一排照相,其中老師必須入選且相鄰,共有排列方法( 。
A.36種B.72種C.90種D.144種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知平面向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2x+3,-x)(x∈R).若$\overrightarrow{a}$與$\overrightarrow$夾角的銳角,求x的取值范圍是(-1,0)∪(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)是定義在R上不恒為0的函數(shù),且對(duì)于任意的實(shí)數(shù)a,b滿足f(2)=2,f(ab)=af(b)+bf(a),an=$\frac{f({2}^{n})}{{2}^{n}}$(n∈N*),bn=$\frac{f({2}^{n})}{n}$(n∈N*),給出下列命題:
①f(0)=f(1);
②f(x)為奇函數(shù);
③數(shù)列{an}為等差數(shù)列;
④數(shù)列{bn}為等比數(shù)列.
其中正確的命題是①②③④.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.三名男生和兩名女生按要求站成一排,分別有多少種不同的站法?(用數(shù)字作答)
(Ⅰ)兩名女生相鄰;
(Ⅱ)女生不能站在兩端;
(Ⅲ)女生從左到右由高到矮排;
(Ⅳ)女生甲不排在左端且女生乙不排在右端.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)一個(gè)班中有$\frac{1}{3}$的女生,$\frac{1}{5}$的三好學(xué)生,而三好學(xué)生中女生占$\frac{1}{3}$,若從此班級(jí)中任選一名代表參加夏令營(yíng)活動(dòng),試問在已知沒有選上女生的條件下,選的是一位三好學(xué)生的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.sin15°=( 。
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$-\frac{{\sqrt{6}+\sqrt{2}}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案