(2014•黃岡模擬)已在點(diǎn)C在圓O的直徑BE的延長(zhǎng)線上,直線CA與圓O相切于點(diǎn)A,∠ACB的平分線分別交AB、AE于點(diǎn)D、F,則∠ADF= .

 

 

45°

【解析】

試題分析:因?yàn)锳C為圓O的切線,由弦切角定理,則∠B=∠EAC.又CD平分∠ACB,則∠ACD=∠BCD,兩式相加,∠B+∠BCD=∠EAC+∠ACD,根據(jù)三角形外角定理,∠ADF=∠AFD,又∠BAE=90°,,△ADF是等腰直角三角形,所以∠ADF=∠AFD=45°.

【解析】
因?yàn)锳C為圓O的切線,由弦切角定理,則∠B=∠EAC.

又CD平分∠ACB,則∠ACD=∠BCD.

所以∠B+∠BCD=∠EAC+∠ACD.

根據(jù)三角形外角定理,∠ADF=∠AFD,

因?yàn)锽E是圓O的直徑,則∠BAE=90°,△ADF是等腰直角三角形,

所以∠ADF=∠AFD=45°.

故答案為:45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.2二階矩陣與平面向量的乘法(解析版) 題型:選擇題

定義運(yùn)算,如,已知α+β=π,,則=( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.3平面與圓錐面的截線練習(xí)卷(解析版) 題型:填空題

(2007•茂名二模)已知圓柱半徑是2,則是一個(gè)與圓柱的軸成45°角的平面截圓柱面所得截痕曲線的離心率是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.1平行射影練習(xí)卷(解析版) 題型:填空題

給出下列四個(gè)命題:

①設(shè)x1,x2∈R,則x1>1且x2>1的充要條件是x1+x2>2且x1x2>1;

②任意的銳角三角形ABC中,有sinA>cosB成立;

③平面上n個(gè)圓最多將平面分成2n2﹣4n+4個(gè)部分;

④空間中直角在一個(gè)平面上的正投影可以是鈍角.

其中真命題的序號(hào)是 (要求寫出所有真命題的序號(hào)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:填空題

(2014•天津一模)如圖所示,已知PA與⊙O相切,A為切點(diǎn),過點(diǎn)P的割線交圓于B、C兩點(diǎn),弦CD∥AP,AD、BC相交于點(diǎn)E,F(xiàn)為CE上一點(diǎn),且∠EDF=∠C,若CE:BE=3:2,DE=3,EF=2.則PA= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:選擇題

如圖,經(jīng)過⊙O上的點(diǎn) A的切線和弦 BC的延長(zhǎng)線相交于點(diǎn) P,若∠CAP=40°,∠ACP=100°,則

∠BAC所對(duì)的弧的度數(shù)為( )

A.40° B.100° C.120° D.30°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:選擇題

如圖所示,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3過C作圓的切線l,過A作l的垂線AD,垂足為D,則∠DAC=( )

A.15° B.30° C.45° D.60°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:填空題

(2013•惠州二模)(幾何證明選講選做題)

如圖所示,AB是圓O的直徑,,AB=10,BD=8,則cos∠BCE= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 3.2數(shù)學(xué)證明練習(xí)卷(解析版) 題型:選擇題

(2014•天津一模)定義一種新運(yùn)算:a?b=,已知函數(shù)f(x)=(1+)?3log2(x+1),若方程f(x)﹣k=0恰有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)k的取值范圍為( )

A.(﹣∞,3)

B.(1,3)

C.(﹣∞,﹣3)∪(1,3)

D.(﹣∞,﹣3)∪(0,3)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案