9.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),求弦AB的長(zhǎng).

分析 (1)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可把極坐標(biāo)方程化為直角坐標(biāo)方程,消去參數(shù)即可得到普通方程;
(2)將直線l的參數(shù)方程代入曲線C的普通方程y2=2x,得t2-8t+7=0,利用根與系數(shù)的關(guān)系、弦長(zhǎng)公式即可得出.

解答 解:(1)由曲線C的極坐標(biāo)方程是:$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$,得ρ2sin2θ=2ρcosθ.
∴由曲線C的直角坐標(biāo)方程是:y2=2x.
由直線l的參數(shù)方程$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$,得t=3+y代入x=1+t中消去t得:x-y-4=0,
所以直線l的普通方程為:x-y-4=0.
(2)將直線l的參數(shù)方程代入曲線C的普通方程y2=2x,得t2-8t+7=0,
設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,
則t1+t2=8,t1t2=7.
則$|{AB}|=\sqrt{2}|{{t_1}-{t_2}}|=\sqrt{2}\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{2}\sqrt{{8^2}-4×7}=6\sqrt{2}$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、一元二次方程的根與系數(shù)的關(guān)系、弦長(zhǎng)公式、參數(shù)的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知$\overrightarrow{a}$=(5,12),|$\overrightarrow{a}$-$\overrightarrow$|=3,則|$\overrightarrow$|的取值范圍為[10,16].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若三角形三邊分別為AB=7,BC=5,AC=6,則$\overrightarrow{BA}•\overrightarrow{BC}$=( 。
A.19B.18C.-18D.-19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若cos(α+$\frac{π}{2}$)=-$\frac{1}{2}$,α∈($\frac{π}{2}$,π),則cos(π-α)值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.點(diǎn)M(-1,2,-3)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是(1,-2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知f(x)=sin(x+1)$\frac{π}{3}$-$\sqrt{3}$cos(x+1)$\frac{π}{3}$,則f(1)+f(2)+f(3)+…+f(2011)=( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求函數(shù)f(x)=sin(x+$\frac{π}{3}$)+2sin(x-$\frac{π}{3}$)的周期及單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖所示,將圖(1)中的正方體截去兩個(gè)三棱錐,得到圖(2)中的幾何體,則該幾何體的側(cè)視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.$\frac{3π}{5}$弧度化為角度是( 。
A.110°B.160°C.108°D.218°

查看答案和解析>>

同步練習(xí)冊(cè)答案