(x+2)2(1-x)5中x7的系數(shù)與常數(shù)項之差的絕對值為


  1. A.
    5
  2. B.
    3
  3. C.
    2
  4. D.
    0
A
分析:根據(jù)題意,分析可得(x+2)2(1-x)5中x7項為(x+2)2中的x2項的與(1-x)5中x5項的積,(x+2)2(1-x)5中的常數(shù)項為(x+2)2中常數(shù)項與(1-x)5中常數(shù)項的積,分別求出x7的系數(shù)與常數(shù)項,進而求其差的絕對值可得答案.
解答:(x+2)2(1-x)5中x7項為(x+2)2中的x2項的與(1-x)5中x5項的積,則x7系數(shù)為 =-1,
(x+2)2(1-x)5中的常數(shù)項為(x+2)2中常數(shù)項與(1-x)5中常數(shù)項的積,則常數(shù)項為,
則常數(shù)項與x7的系數(shù)的差的絕對值為5;
故選A.
點評:本題考查二項式定理的運用,關鍵在于得到常數(shù)項與x7的系數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知全集U=R,M={x|-2≤x≤2},N={x|x<1},那么M∩?UN=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在R上函數(shù)f(x)的圖象與函數(shù)g(x)=a(x-2)+2(2-x)3(a為常數(shù))的圖象關于直線x=1對稱.
(Ⅰ)求f(x)的解析式;?
(Ⅱ)設F(x)=(
f(x)x
+4lnx)′
,當m>0時,判斷F(m3)與F(m2)的大小關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩圓(x+1)2+(y-1)2=r2和(x-2)2+(y+2)2=R2相交于P、Q兩點,若點P坐標為(1,2),則點Q的坐標為
(-2,-1)
(-2,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U是實數(shù)集R,M={x|-2≤x≤2},N={x|x2-4x+3>0},則M∩N=( 。

查看答案和解析>>

同步練習冊答案