分析 (Ⅰ)直接利用f(1)=2,求得a的值.
(Ⅱ)根據(jù)函數(shù)f(x)的定義域關于原點對稱,且滿足f(-x)=-f(x),可得函數(shù)f(x)為奇函數(shù).
(Ⅲ)利用函數(shù)的單調(diào)性的定義證明f(x)在(1,+∞)上的單調(diào)遞增.
解答 解:(Ⅰ)∵函數(shù)f(x)=x+$\frac{a}{x}$,且f(1)=1+a=2,∴a=1.
(Ⅱ)∵函數(shù)f(x)=x+$\frac{1}{x}$ 的定義域{x|x≠0},關于原點對稱,
且f(-x)=-x+$\frac{1}{-x}$=-(x+$\frac{1}{x}$)=-f(x),故函數(shù)f(x)為奇函數(shù).
(Ⅲ)函數(shù)f(x)=x+$\frac{1}{x}$ 在(1,+∞)上單調(diào)遞增,理由如下:設1<x1<x2,
f(x1)-f(x2)=(x1-x2)-($\frac{1}{{x}_{2}}$-$\frac{1}{{x}_{1}}$)=(x1-x2)•$\frac{{x}_{1}{•x}_{2}-1}{{x}_{1}{•x}_{2}}$,
由題設可得,x1-x2<0,$\frac{{x}_{1}{•x}_{2}-1}{{x}_{1}{•x}_{2}}$>0,f(x1)-f(x2)<0,故f(x)在(1,+∞)上單調(diào)遞增.
點評 本題主要考查求函數(shù)的值,函數(shù)的奇偶性的判斷方法,證明函數(shù)的單調(diào)性,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{35}{8}$ | B. | $\frac{27}{8}$ | C. | $\frac{19}{8}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}+3}}{2}$ | C. | $\frac{{\sqrt{5}+1}}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com