如圖,在四棱錐中,底面是邊長為的菱形,, 底面,,為的中點(diǎn),為的中點(diǎn).
(Ⅰ)求四棱錐的體積;
(Ⅱ)證明:直線平面.
(Ⅰ);(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)求四棱錐的體積,由體積公式,由已知底面,顯然是高,且值為2,而底面是邊長為的菱形,,,有平面幾何知識(shí),可求得面積,代入公式,可求得體積;(Ⅱ)證明:直線平面,證明線面平行,首先證明線線平行,可用三角形的中位線平行,也可用平行四邊形的對(duì)邊平行,本題雖有中點(diǎn),但沒直接的三角形,可考慮用平行四邊形的對(duì)邊平行,可取OD的中點(diǎn)G,連結(jié)CG,MG,證明四邊形為平行四邊形即可,也可取中點(diǎn),連接,,利用面面平行則線面平行,證平面平面即可.
試題解析:(Ⅰ)
(Ⅱ)取中點(diǎn),連接,,,又 ,.
考點(diǎn):幾何體的體積,線面平行的判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.
(1)若F為PD的中點(diǎn),求證:AF⊥面PCD;
(2)證明:BD∥面PEC;
(3)求該幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥平面ABC,△ABC為正三角形,且側(cè)面AA1C1C是邊長為2的正方形,E是的中點(diǎn),F在棱CC1上。
(1)當(dāng)CF時(shí),求多面體ABCFA1的體積;
(2)當(dāng)點(diǎn)F使得A1F+BF最小時(shí),判斷直線AE與A1F是否垂直,并證明的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn)
(Ⅰ)證明:BC1//平面A1CD;
(Ⅱ)設(shè)AA1=AC=CB=2,AB=,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是正方形,底面,,,點(diǎn)、分別為棱、的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐平面,底面為直角梯形,,且,.
(1)點(diǎn)在線段上運(yùn)動(dòng),且設(shè),問當(dāng)為何值時(shí),平面,并證明你的結(jié)論;
(2)當(dāng)面,且,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2.
(Ⅰ)若F為PC的中點(diǎn),求證PC⊥平面AEF;
(Ⅱ)求四棱錐P-ABCD的體積V.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com