(本小題滿分12分)
已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若恒成立,求的取值范圍.
(1)增區(qū)間,減區(qū)間(2)
【解析】
試題分析:(Ⅰ),其定義域是 …………1分
令,得,(舍去)。 …………… 3分
當(dāng)時,,函數(shù)單調(diào)遞增;
當(dāng)時,,函數(shù)單調(diào)遞減;
即函數(shù)的單調(diào)區(qū)間為,。 ……………… 6分
(Ⅱ)設(shè),則, ………… 7分
當(dāng)時,,單調(diào)遞增,不可能恒成立,
當(dāng)時,令,得,(舍去)。
當(dāng)時,,函數(shù)單調(diào)遞增; 當(dāng)時,,函數(shù)單調(diào)遞減;
故在上的最大值是,依題意恒成立, …………… 9分
即,…又單調(diào)遞減,且,………10分
故成立的充要條件是,所以的取值范圍是……… 12分
考點:函數(shù)求單調(diào)區(qū)間求最值
點評:函數(shù)中令得增區(qū)間,令得減區(qū)間,第二問中不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,在求解過程中用到了函數(shù)單調(diào)性
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com