精英家教網 > 高中數學 > 題目詳情
已知函數y=f(x)(x∈R)滿足f(x)+f(1-x)=1.
(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)
的值;
(2)若數列{an}滿足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
(n∈N*),求{an}的通項公式;
(3)若數列{bn}滿足bn=2n+1•an,Sn是數列{bn}前n項的和,是否存在正實數k,使不等式knSn>4bn對于一切的n∈N*恒成立?若存在指出k的取值范圍,并證明;若不存在說明理由.
分析:由題設知,處變量的和為1,則函數值和為1.對于(1)令x=
1
2
可以求得f(
1
2
)值,令x=
1
n
可以求得f(
1
n
)+f(
n-1
n
)的值.
對于(2)觀察通項的形式,可以用倒序相加法求出通項的方程.求出an的值.
對于(3)可以看出,本題是一個對存在性問題的探究,其前提是解出數列{bn}的前n項和,觀察其形式可以看出,就用錯位相減法求和,代入不等式,可得到一關于n的一元二次不等式恒成立,由單調性判斷可得出關于參數k的不等式.
解答:解:(1)令x=
1
2
,f(
1
2
)+f(1-
1
2
)=1
,∴f(
1
2
)=
1
2
,
x=
1
n
,f(
1
n
)+f(
n-1
n
)=1

(2)∵an=f(0)+f(
1
n
)+f(
2
n
)++f(
n-1
n
)+f(1)

an=f(1)+f(
n-1
n
)+f(
n-2
n
)++f(
1
n
)+f(0)

由(Ⅰ),知f(
1
n
)+f(
n-1
n
)=1

∴①+②,得2an=(n+1).∴an=
n+1
2

(3)∵bn=2n+1•an,∴bn=(n+1)•2n
∴Sn=2•21+3•22+4•23+…+(n+1)•2n,①
2Sn=2•22+3•23+4•24+…+n•2n+(n+1)•2n+1,②
①-②得-Sn=4+22+23+…+2n-(n+1)•2n+1
即Sn=n•2n+1
要使得不等式knSn>4bn恒成立,
即kn2-2n-2>0對于一切的n∈N*恒成立,n=1時,k-2-2>0成立,即k>4
設g(n)=kn2-2n-2
當k>4時,由于對稱軸直線n=
1
k
<1

且g(1)=k-2-2>0,而函數f(x)在[1,+∞)是增函數,
∴不等式knSn>bn恒成立
即當實數k大于4時,不等式knSn>bn對于一切的n∈N*恒成立.
點評:本題考點是恒等式的意義與錯位相減法求和,以及不等式恒成立時怎么根據其形式求最值.考查了變形能力以及結合相應函數的性質對不等式恒成立的條件作出判斷的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

16、已知函數y=f(x)是R上的奇函數且在[0,+∞)上是增函數,若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

2、已知函數y=f(x+1)的圖象過點(3,2),則函數f(x)的圖象關于x軸的對稱圖形一定過點( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是偶函數,當x<0時,f(x)=x(1-x),那么當x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)是定義在R上的奇函數,當x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習冊答案