某車間分批生產(chǎn)某種產(chǎn)品,每批的生產(chǎn)準(zhǔn)備費(fèi)用為800元.若每批生產(chǎn)x件,則平均倉儲(chǔ)時(shí)間為,且每件產(chǎn)品每天的倉儲(chǔ)費(fèi)用為1元.為使平均到每件產(chǎn)品的生產(chǎn)準(zhǔn)備費(fèi)用

與倉儲(chǔ)費(fèi)用之和最小,每批應(yīng)生產(chǎn)產(chǎn)品

[  ]

A.

60件

B.

80件

C.

100件

D.

120件

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-φ)的部分圖象如圖所示,則y=f(x)的圖象可由函數(shù)y=sinx的圖象(縱坐標(biāo)不變)作下述變換得到

[  ]

A.

先把各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向右平移個(gè)單位

B.

先把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向右平移個(gè)單位

C.

先把各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向右平移個(gè)單位

D.

先把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向左平移個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

“l(fā)gx,lgy,lgz成等差數(shù)列”是“y2=xz”成立的

[  ]

A.

充分非必要條件;

B.

必要非充分條件;

C.

充要條件

D.

既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖,△ABC是直角三角形,∠BAC=30°,BM⊥AC交AC于點(diǎn)M,EA⊥平面ABC,F(xiàn)C∥EA,AC=2BC=4,EA=3,F(xiàn)C=1

(1)證明:EM⊥BF;

(2)求平面BEF與平面ABC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖所示的是一個(gè)算法的流程圖,已知a1=3,輸出的結(jié)果為7,則a2的值是

[  ]

A.

9

B.

10

C.

11

D.

12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

若實(shí)數(shù)x,y滿足不等式,則的取值范圍是________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖所示為一個(gè)幾何體的直觀圖、三視圖(其中正視圖為直角梯形,俯視圖為正方形,側(cè)視圖為直角三角形,尺寸如圖所示).

(1)求四棱錐P-ABCD的體積;

(2)證明:BD∥平面PEC;

(3)若G為BC上的動(dòng)點(diǎn),求證:AE⊥PG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知向量=(sinx-cosx,1),=(cosx,),若f(x)=,

(Ⅰ)求函數(shù)f(x)的最小正周期;

(Ⅱ)已知△ABC的三內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且a=3,(A為銳角),2sinC=sinB,求a、c、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

對(duì)于非空實(shí)數(shù)集A,記A*={y|?x∈A,y≥x}.設(shè)非空實(shí)數(shù)集合M、P滿足:M⊆P,且若x>1,則x∉P.現(xiàn)給出以下命題:
①對(duì)于任意給定符合題設(shè)條件的集合M、P,必有P*⊆M*;
②對(duì)于任意給定符合題設(shè)條件的集合M、P,必有M*∩P≠∅;
③對(duì)于任意給定符合題設(shè)條件的集合M、P,必有M∩P*=∅;
④對(duì)于任意給定符合題設(shè)條件的集合M、P,必存在常數(shù)a,使得對(duì)任意的b∈M*,恒有a+b∈P*.其中正確的命題是(  )

A.①③ B.③④ 
C.①④ D.②③ 

查看答案和解析>>

同步練習(xí)冊(cè)答案