已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為e.
(Ⅰ)若e=
3
2
,求橢圓的方程;
(Ⅱ)設(shè)直線y=kx與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF2,BF2的中點(diǎn).若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且
2
2
<e≤
3
2
,求k的取值范圍.
分析:(Ⅰ)由題意得
c=3
c
a
=
3
2
,得a=2
3
,由此能求出橢圓的方程.
(Ⅱ)由
x2
a2
+
y2
b2
=1
y=kx
得(b2+a2k2)x2-a2b2=0.設(shè)A(x1,y1),B(x2,y2).所以x1+x2=0,x1x2=
-a2b2
b2+a2k2
,依題意OM⊥ON知,四邊形OMF2N為平行四邊形,所以AF2⊥BF2,因?yàn)?span id="fff74zw" class="MathJye">
F2A
=(x1-3,y1),
F2B
=(x2-3,y2)
,所以
F2A
F2B
=(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0
.由此能求出k的取值范圍.
解答:解:(Ⅰ)由題意得
c=3
c
a
=
3
2
,得a=2
3
.(2分)
結(jié)合a2=b2+c2,解得a2=12,b2=3.(3分)
所以,橢圓的方程為
x2
12
+
y2
3
=1
.(4分)
(Ⅱ)由
x2
a2
+
y2
b2
=1
y=kx
得(b2+a2k2)x2-a2b2=0.
設(shè)A(x1,y1),B(x2,y2).
所以x1+x2=0,x1x2=
-a2b2
b2+a2k2
,(6分)
依題意,OM⊥ON,
易知,四邊形OMF2N為平行四邊形,
所以AF2⊥BF2,(7分)
因?yàn)?span id="42n2m49" class="MathJye">
F2A
=(x1-3,y1),
F2B
=(x2-3,y2)

所以
F2A
F2B
=(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0
.(8分)
-a2(a2-9)(1+k2)
a2k2+(a2-9)
+9=0
,(9分)
將其整理為k=
a4-18a2+812
-a4+18a2
=-1-
812
a4-18a2
.(10分)
因?yàn)?span id="g77utt5" class="MathJye">
2
2
<e≤
3
2
,所以2
3
≤a<3
2
,12≤a2<18.(11分)
所以k2
1
8
,即K∈(-∞,-
2
4
]∪[
2
4
,+∞)
.(13分)
點(diǎn)評(píng):本題考查橢圓方程的求法和直線與橢圓位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-c,0)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且不與y軸垂直的直線l交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線l⊥x軸時(shí),求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點(diǎn)M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)m=-1時(shí),求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點(diǎn)做垂直于x軸的直線與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線l上的射影,AB的中垂線與y軸交于點(diǎn)P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過F作y軸的平行線交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案