17.若a=2${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{2}}$0.8,c=log20.8,則a,b,c的大小關(guān)系為( 。
A.b>a>cB.a>c>bC.a>b>cD.b>c>a

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=2${\;}^{\frac{1}{3}}$>20=1,
0=$lo{g}_{\frac{1}{2}}1$<b=log${\;}_{\frac{1}{2}}$0.8<$lo{g}_{\frac{1}{2}}\frac{1}{2}$=1,
c=log20.8<log21=0,
∴a,b,c的大小關(guān)系為:a>b>c.
故選:C.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)P為雙曲線$\frac{{x}^{2}}{4}$-y2=1上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),M為線段OP的中點(diǎn),則點(diǎn)M的軌跡方程是( 。
A.x2-4y2=1B.4y2-x2=1C.x2-$\frac{y{\;}^{2}}{4}$=1D.$\frac{x{\;}^{2}}{2}$-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列關(guān)于命題正確的個(gè)數(shù)為( 。
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
②“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件;
③若p∨q為真命題,則p∧q為真命題.
④命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”
⑤當(dāng)x>0時(shí),恒有x>sinx.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-2y+1≤0\\ x+y-1≥0\\ y≤2\end{array}\right.$,則$\frac{y+1}{x}$的取值范圍是(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)y=f(x)在R上有定義,對(duì)于任一給定的正數(shù)p,定義函數(shù)${f_p}(x)=\left\{\begin{array}{l}f(x),f(x)≤p\\ p,f(x)>p\end{array}\right.$,則稱函數(shù)fp(x)為f(x)的“p界函數(shù)”,若給定函數(shù)f(x)=x2-2x-1,p=2,則下列結(jié)論不成立的是:②.
①fp[f(0)]=f[fp(0)];       ②fp[f(1)]=f[fp(1)];
③fp[fp(2)]=f[f(2)];       ④fp[fp(3)]=f[f(3)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知p:?x∈R,sinx+2cosx=3,q:?x∈R,4x+2x+1+1>0,則下列命題中真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且$ef(x)-{f^'}(1){e^x}+ef(0)x-\frac{1}{2}e{x^2}=0$.
(1)求f(x)的解析式;
(2)若方程$f(x)-\frac{1}{2}{x^2}-m=0$在區(qū)間[-1,2]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)$f(x)=lnx+tanα(α∈(0,\frac{π}{2}))$的導(dǎo)函數(shù)為f′(x),若存在0<x0<1使得f′(x0)=f(x0)成立,則實(shí)數(shù)α的取值范圍是($\frac{π}{4}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.與圓C1:(x+3)2+y2=1,圓C2:(x-3)2+y2=9同時(shí)外切的動(dòng)圓圓心的軌跡方程是( 。
A.$\frac{y^2}{8}$-x2=1B.x2-$\frac{y^2}{8}$=1C.x2-$\frac{y^2}{8}$=1(x≥1)D.x2-$\frac{y^2}{8}$=1(x≤-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案