【題目】設函數(shù).

(1)試討論函數(shù)的單調(diào)性;

(2)設,記,當時,若方程有兩個不相等的實根 ,證明.

【答案】(1)見解析;(2)見解析.

【解析】試題分析:

(1)求解函數(shù)的導函數(shù),分類討論可得:

①若時,當時,函數(shù)單調(diào)遞減,當時,函數(shù)單調(diào)遞增;

②若時,函數(shù)單調(diào)遞增;

③若時,當時,函數(shù)單調(diào)遞減,當時,函數(shù)單調(diào)遞增.

(2)構(gòu)造新函數(shù) ,結(jié)合新函數(shù)的性質(zhì)即可證得題中的不等式.

試題解析:

(1)由,可知 .

因為函數(shù)的定義域為,所以,

①若時,當時, ,函數(shù)單調(diào)遞減,當時, ,函數(shù)單調(diào)遞增;

②若時,當內(nèi)恒成立,函數(shù)單調(diào)遞增;

③若時,當時, ,函數(shù)單調(diào)遞減,當時, ,函數(shù)單調(diào)遞增.

(2)證明:由題可知 ,

所以 .

所以當時, ;當時, ;當時, .

欲證,只需證,又,即單調(diào)遞增,故只需證明.

, 是方程的兩個不相等的實根,不妨設為,

兩式相減并整理得

從而,

故只需證明,

.

因為

所以(*)式可化為,

.

因為,所以

不妨令,所以得到, .

,所以,當且僅當時,等號成立,因此單調(diào)遞增.

,

因此, ,

, 得證,

從而得證.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的不等式

時,解不等式;

時,解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:

(1)如果不超過200元,則不給予優(yōu)惠;

(2)如果超過200元但不超過500元,則按標價給予9折優(yōu)惠;

(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.

某人單獨購買A,B商品分別付款168元和423元,假設他一次性購買A,B兩件商品,則應付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在區(qū)間上, , , , , 均可為一個三角形的三邊長,則稱函數(shù)三角形函數(shù).已知函數(shù)在區(qū)間上是三角形函數(shù),則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高一、高二、高三的三個年級學生人數(shù)如下表


高三

高二

高一

女生

100

150

z

男生

300

450

600

按年級分層抽樣的方法評選優(yōu)秀學生50人,其中高三有10人.

1)求z的值;

2)用分層抽樣的方法在高一中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率;

3)用隨機抽樣的方法從高二女生中抽取8,經(jīng)檢測她們的得分如下:9486,92, 9687,93,9082,把這8人的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過05的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 ;在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為

(1)a=1,求Cl交點的直角坐標;

(2)C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為的棱形,且分別是的中點.

(1)證明:平面;

(2)若二面角的大小為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù)f(x)=x (m∈N*).

(1)試確定該函數(shù)的定義域,并指明該函數(shù)在其定義域上的單調(diào)性;

(2)若該函數(shù)還經(jīng)過點(2, ),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠今年擬舉行促銷活動,經(jīng)調(diào)查測算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬件)與年促銷費m(萬元)(m≥0)滿足x=3-.已知今年生產(chǎn)的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

(1)將今年該產(chǎn)品的利潤y萬元表示為年促銷費m(萬元)的函數(shù);

(2)求今年該產(chǎn)品利潤的最大值,此時促銷費為多少萬元?

查看答案和解析>>

同步練習冊答案