已知直線過點且與拋物線交于A、B兩點,以弦AB為直徑的圓恒過坐標原點O.
(1)求拋物線的標準方程;
(2)設是直線上任意一點,求證:直線QA、QM、QB的斜率依次成等差數(shù)列.
(1) (2)詳見解析.
【解析】
試題分析:(1)設直線方程為,代入得
設 ,,則有,而 ,
故
即,得,所以拋物線方程為;
(2)由是直線上任意一點,可設 由(1)知 , ,
∴= , ∵ ==,
==,
+=+=
= = == =,有等差中項的性質(zhì)可知直線QA、QP、QB的斜率依次成等差數(shù)列.
試題解析:(1)設直線方程為,代入得
設 ,,則有 2分
而 ,
故
即,得,所以拋物線方程為 6分
說明:取過M 點的特殊位置的直線求得拋物線的方程給滿分.
(2)設 由(1)知 , ,
∴= , ∵ ==,
==, 9分
+=+=
=
= == = 12分
所以直線QA、QP、QB的斜率依次成等差數(shù)列. 13分
考點:1.拋物線的方程;2.直線與拋物線的位置關系.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三10月月考文科數(shù)學 題型:填空題
22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;
|
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;
(Ⅲ)過A、B分別作拋物C的切線且交于點M,求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江蘇省南通市如東縣栟茶高級中學高考數(shù)學一模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2010年高考數(shù)學最有可能考的50題(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com