【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

(2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的n名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?

說明你的理由;

(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

【答案】(1)見解析;(2)見解析;(3

【解析】

(1)本題可根據(jù)分層抽樣的相關(guān)性質(zhì)列出等式,即可計(jì)算出抽取的總?cè)藬?shù),再用抽取的總?cè)藬?shù)減去男生人數(shù)即可得出女生人數(shù);

(2)首先可以根據(jù)題意以及(1)中結(jié)果將列聯(lián)表補(bǔ)充完整,然后通過列聯(lián)表中的數(shù)據(jù)計(jì)算出,即可得出結(jié)果;

(3)本題首先可以通過分層抽樣的相關(guān)性質(zhì)計(jì)算出男生人數(shù)以及女生人數(shù),然后寫出所有的可能事件以及滿足題意“至少有1名女生”的事件,最后通過概率的相關(guān)計(jì)算公式即可得出結(jié)果。

(1)因?yàn)?/span>,所以,女生人數(shù)為.

(2)列聯(lián)表為:

的觀測值,

所以有99.5%的把握認(rèn)為選擇科目與性別有關(guān).

(3)從90個選擇物理的學(xué)生中采用分層抽樣的方法抽6名,

這6名學(xué)生中有4名男生,記為、、;2名女生記為、,

抽取2人所有的情況為、、、、、、、、、,共15種,

選取的2人中至少有1名女生情況的有、、、、、、,共9種,

故所求概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點(diǎn)在x軸上的橢圓C1的長軸長為8,短半軸為2,拋物線C2的頂點(diǎn)在原點(diǎn)且焦點(diǎn)為橢圓C1的右焦點(diǎn).

(1)求拋物線C2的標(biāo)準(zhǔn)方程;

(2)過(1,0)的兩條相互垂直的直線與拋物線C2有四個交點(diǎn),求這四個點(diǎn)圍成四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)求ff1)),ff1));

2)畫出fx)的圖象;

3)若fx=a,問a為何值時,方程沒有根?有一個根?兩個根?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與直線的距離為,橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)在(1)的條件下,拋物線的焦點(diǎn)與點(diǎn)關(guān)于軸上某點(diǎn)對稱,且拋物線與橢圓在第四象限交于點(diǎn),過點(diǎn)作拋物線的切線,求該切線方程并求該直線與兩坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線)的焦點(diǎn)F且斜率為1的直線交拋物線CMN兩點(diǎn),且

1)求p的值;

2)拋物線C上一點(diǎn),直線(其中)與拋物線C交于AB兩個不同的點(diǎn)(AB均與點(diǎn)Q不重合).設(shè)直線QAQB的斜率分別為.

i)直線l是否過定點(diǎn)?如果是,請求出所有定點(diǎn);如果不是,請說明理由;

ii)設(shè)點(diǎn)T在直線l上,且滿足,其中為坐標(biāo)原點(diǎn).當(dāng)線段最長時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)ln.

(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;

(2)對于x[2,6],f(x)lnln恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】首屆中國國際進(jìn)口博覽會期間,甲、乙、丙三家中國企業(yè)都有意向購買同一種型號的機(jī)床設(shè)備,他們購買該機(jī)床設(shè)備的概率分別為,且三家企業(yè)的購買結(jié)果相互之間沒有影響,則三家企業(yè)中恰有1家購買該機(jī)床設(shè)備的概率是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差不為0,其前項(xiàng)和為,,且,成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式及的最小值;

2)若數(shù)列是等差數(shù)列,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,.

(1)若,試問是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,求出的值;若不存在,請說明理由;

(2)在(1)的條件下,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案