【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2n﹣1.?dāng)?shù)列{bn}滿足b1=2,bn+1﹣2bn=8an .
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)證明:數(shù)列{ }為等差數(shù)列,并求{bn}的通項(xiàng)公式.
(3)求{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:當(dāng)n=1時(shí),a1=S1=2﹣1=1;
當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=2n﹣1﹣(2n﹣1﹣1)=2n﹣1;
上式對(duì)n=1也成立.
則數(shù)列{an}的通項(xiàng)公式為an=2n﹣1;
(2)證明:bn+1﹣2bn=8an=82n﹣1=2n+2,
兩邊同除以2n+1,可得
﹣ =2,
可得數(shù)列{ }是首項(xiàng)為 =1,公差為2的等差數(shù)列;
即有 =1+2(n﹣1)=2n﹣1,
則{bn}的通項(xiàng)公式為bn=(2n﹣1)2n;
(3)解:{bn}的前n項(xiàng)和Tn=12+322+523+…+(2n﹣1)2n,
可得2Tn=122+323+524+…+(2n﹣1)2n+1,
兩式相減可得,﹣Tn=2+2(22+23+…+2n)﹣(2n﹣1)2n+1
=2+2 ﹣(2n﹣1)2n+1,
化簡可得Tn=6+(2n﹣3)2n+1.
【解析】(1)運(yùn)用當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1 , 計(jì)算即可得到所求通項(xiàng)公式;(2)對(duì)bn+1﹣2bn=2n+2 , 兩邊同除以2n+1 , 由等差數(shù)列的定義和通項(xiàng)公式,即可得到所求;(3)運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理,即可得到所求和.
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x2﹣kx﹣4在區(qū)間[﹣2,4]上具有單調(diào)性,則k的取值范圍是( )
A.[﹣8,16]
B.(﹣∞,﹣8]∪[16,+∞)
C.(﹣∞,﹣8)∪(16,+∞)
D.[16,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會(huì)》是中央電視臺(tái)最近新推出的一檔有重大影響力的大型電視文化節(jié)目,今年兩會(huì)期間,教育部部長陳寶生答記者問時(shí)給予其高度評(píng)價(jià)。基于這樣的背景,山東某中學(xué)積極響應(yīng),也舉行了一次詩詞競賽。組委會(huì)在競賽后,從中抽取了100名選手的成績(百分制),作為樣本進(jìn)行統(tǒng)計(jì),作出了圖中的頻率分布直方圖,分析后將得分不低于60分的學(xué)生稱為“詩詞達(dá)人”,低于60分的學(xué)生稱為“詩詞待加強(qiáng)者”.
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“詩詞達(dá)人”與性別有關(guān)?
詩詞待加強(qiáng)者 | 詩詞達(dá)人 | 合計(jì) | |
男 | 15 | ||
女 | 45 | ||
合計(jì) |
(Ⅱ)將頻率視為概率,現(xiàn)在從該校大量參與活動(dòng)的學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“詩詞達(dá)人”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、數(shù)學(xué)期望和方差.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且 =2csinA
(1)確定角C的大。
(2)若c= ,且△ABC的面積為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
(1)求圓的方程;
(2)設(shè)直線與圓相交于、兩點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn)?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租時(shí)間不超過兩小時(shí)免費(fèi),超過兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人獨(dú)立來該租車點(diǎn)騎游(各組一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為, ;兩小時(shí)以上且不超過三小時(shí)還車的概率分別為, ;兩人租車時(shí)間都不會(huì)超過四小時(shí).
(1)求甲、乙兩人所付租車費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生成績的平均分是85,乙班學(xué)生成績的中位數(shù)是89.
(1)求和的值;
(2)計(jì)算乙班7位學(xué)生成績的方差.
(3)從成績?cè)?0分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求乙班至少有一名學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為, .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過定點(diǎn)的直線與雙曲線的左支有兩個(gè)交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為, ,求正數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com