【題目】已知函數(shù)為定義域上的奇函數(shù),且在上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則

A.18B.9C.27D.81

【答案】C

【解析】

根據(jù)題意,由奇函數(shù)的性質(zhì)可得f(﹣x+fx)=0,又由gx)=fx3+xga1+ga2++ga9)=27,可得fa13+fa23++fa93+a1+a2++a9)=27,結(jié)合等差數(shù)列的性質(zhì)可得fa15)=﹣fa95)=f5a9),進而可得a155a9,即a1+a910,進而計算可得答案.

根據(jù)題意,函數(shù)yfx)為定義域R上的奇函數(shù),

則有f(﹣x+fx)=0,

gx)=fx3+x,

∴若ga1+ga2++ga9)=27

fa13+a1+fa23+a2++fa93+a927,

fa13+fa23++fa93+a1+a2++a9)=27,

fa13+fa23++fa93))+a13+a23++a93)=0,

又由yfx+x為定義域R上的奇函數(shù),且在R上是單調(diào)函數(shù),

且(a13+a93)=(a23+a83)=…=2a53),

a530,

a1+a9a2+a8=…=2a56,

a1+a2++a99a527;

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)滿足,當時,,關(guān)于的不等式上有且只有200個整數(shù)解,則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,若的夾角為,則直線與圓的位置關(guān)系是(

A.相交但不過圓心B.相交且過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為為橢圓上一動點,當的面積最大時,其內(nèi)切圓半徑為,設(shè)過點的直線被橢圓截得線段,

軸時,.

1)求橢圓的標準方程;

2)若點為橢圓的左頂點,是橢圓上異于左、右頂點的兩點,設(shè)直線的斜率分別為,若,試問直線是否過定點?若過定點,求該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求的最大值及該函數(shù)取得最大值時的值;

(2)在中, 分別是角 所對的邊,若,且,求邊的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓長軸的一個端點是拋物線的焦點,且橢圓焦點與拋物線焦點的距離是1。

1)求橢圓的標準方程;

2)若是橢圓的左右端點,為原點,是橢圓上異于的任意一點,直線分別交軸于,問是否為定值,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,,點的中點.

1)求證:平面;

2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知美國蘋果公司生產(chǎn)某款iphone手機的年固定成本為40萬美元,每生產(chǎn)1萬部還需要另外投入16美元,設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iphone手機萬部并全部銷售完,每萬部的銷售收入為萬元,且.

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式;

(2)當年產(chǎn)量為多少萬部時,蘋果公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知.

1)解關(guān)于x的不等式;

2)若的解集為R,求a的取值范圍.

查看答案和解析>>

同步練習冊答案