【題目】曙光中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出名學(xué)生,將其成績(jī)(均為整數(shù))分成六段,,,后畫出如下部分頻率分布直方圖,則第四小組的頻率為_______,從成績(jī)是的學(xué)生中選兩人,他們?cè)谕环謹(jǐn)?shù)段的概率_______.

【答案】0.3

【解析】

1)利用六個(gè)矩形的面積和為1求出第四小組的頻率;(2)利用古典概型的概率公式求他們?cè)谕环謹(jǐn)?shù)段的概率.

(1)第四小組的頻率為1-10×0.01-10×0.015×2-10×0.025-10×0.005=0.3,

所以第四小組的頻率為0.3.

(2)成績(jī)?cè)?/span>的學(xué)生有人,設(shè)他們?yōu)?/span>a,b,c,d,

成績(jī)?cè)?/span>的學(xué)生有人,設(shè)他們?yōu)?/span>1,2.

6個(gè)人中選兩個(gè)人,有

,15種,

其中兩個(gè)人在同一小組的有1,2),共7種,

由古典概型的概率公式得他們?cè)谕环謹(jǐn)?shù)段的概率為.

故答案為: (1). 0.3 (2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組有男生20人,女生10人,從中抽取一個(gè)容量為5的樣本,恰好抽到2名男生和3名女生,則

①該抽樣可能是系統(tǒng)抽樣;

②該抽樣可能是隨機(jī)抽樣:

③該抽樣一定不是分層抽樣;

④本次抽樣中每個(gè)人被抽到的概率都是

其中說法正確的為( )

A.①②③B.②③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),平面直角坐標(biāo)系中,的方程為的方程為,兩圓內(nèi)切于點(diǎn),動(dòng)圓外切,與內(nèi)切.

1)求動(dòng)圓圓心的軌跡方程;

2)如圖(2),過點(diǎn)作的兩條切線,若圓心在直線上的也同時(shí)與相切,則稱的一個(gè)“反演圓”

(ⅰ)當(dāng)時(shí),求證:的半徑為定值;

(ⅱ)在(。┑臈l件下,已知均與外切,與內(nèi)切,且的圓心為,求證:若的“反演圓”相切,則也相切。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線,動(dòng)直線過定點(diǎn).

1)若直線與圓相切,求直線的方程;

2)若直線與圓相交于兩點(diǎn),點(diǎn)的中點(diǎn),直線與直線相交于點(diǎn). 探索是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集(,)具有性質(zhì)P;對(duì)任意的i,j(),兩數(shù)中至少有一個(gè)屬于A.

(1)分別判斷數(shù)集是否具有性質(zhì)P,并說明理由;

(2)證明:,且;

(3)當(dāng)時(shí),若,求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】商店出售茶壺和茶杯,茶壺定價(jià)每個(gè)20元,茶杯每個(gè)5元,該商店推出兩種優(yōu)惠辦法:(1)買一個(gè)茶壺贈(zèng)一個(gè)茶杯;(2)按總價(jià)的92%付款.

某顧客需購(gòu)買茶壺4個(gè),茶杯若干個(gè)(不少于4個(gè)),若購(gòu)買茶杯數(shù)x個(gè),付款y(元),分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)關(guān)系式,并討論該顧客買同樣多的茶杯時(shí),兩種辦法哪一種更優(yōu)惠。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三有500名學(xué)生,在一次考試的英語成績(jī)服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如下:

如果成績(jī)大于135的為特別優(yōu)秀,則本次考試英語、數(shù)學(xué)特別優(yōu)秀的大約各多少人?

Ⅱ)試問本次考試英語和數(shù)學(xué)的成績(jī)哪個(gè)較高,并說明理由.

Ⅲ)如果英語和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望。

參考公式及數(shù)據(jù):

,則,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國(guó)青年報(bào)》2015514日?qǐng)?bào)道:伴隨著網(wǎng)絡(luò)技術(shù)的蓬勃發(fā)展,國(guó)內(nèi)電子商務(wù)獲得了爆炸式的增長(zhǎng),2014年網(wǎng)上零售額達(dá)到了27898億元,占社會(huì)消費(fèi)品零售總額的10%,也就是說,人們?nèi)粘OM(fèi)中10%是通過網(wǎng)購(gòu),而且還以年30%,40%的速度增長(zhǎng)."假設(shè)2014-2020年網(wǎng)上零售額每年的增長(zhǎng)率均為35%,試算出2015-2020年每年的網(wǎng)上零售額(精確到1億元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正方形 平面, // , , 的中點(diǎn)

1)求證: ;

2)求證: //平面

3)求二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案