已知y=f(x)是奇函數(shù),當x>0時,f(x)=x(1+x),那么當x<0時,f(x)的解析式是(  )
分析:設x<0,可得-x>0,代入已知式子,由函數(shù)的奇偶性可得.
解答:解:設x<0,可得-x>0,
故可得f(-x)=-x(1-x),
又y=f(x)是奇函數(shù),
則-f(x)=f(-x)=-x(1-x),
故可得f(x)=x(1-x),
故選B
點評:本題考查函數(shù)對稱區(qū)間的解析式,涉及函數(shù)的奇偶性,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是奇函數(shù),當x∈(0,2)時,f(x)=lnx-ax(a>
1
2
)
,當x∈(-2,0)時,f(x)的最小值為1,
則a的值等于( 。
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上海)已知y=f(x)是奇函數(shù),若g(x)=f(x)+2且g(1)=1,則g(-1)=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是奇函數(shù),且滿足f(x+2)+2f(-x)=0,當x∈(0,2)時,f(x)=Inx-ax(a>
1
2
)
,當x∈(-4,-2),f(x)的最大值為-
1
4
,則a=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是奇函數(shù),且f(3)=7,則f(-3)=
-7
-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是奇函數(shù),當x∈(0,2)時,f(x)=lnx-ax(a>
12
),當x∈(-2,0)時,f(x)的最小值為1,則a的值等于
 

查看答案和解析>>

同步練習冊答案