已知函數(shù)其中為自然對數(shù)的底數(shù), .
(1)設(shè),求函數(shù)的最值;
(2)若對于任意的,都有成立,求的取值范圍.
(1)時,,;(2)
【解析】
試題分析:(1)將代入解析式,利用導函數(shù)求出駐點然后在分析導函數(shù)的正負,從而得出函數(shù)的單調(diào)性求出最值,;(2)將對于任意的,都有成立轉(zhuǎn)化為對任意,恒成立,然后利用參變分離求解即可.
試題解析:(1)當時,,. 1分
或,當在上變化時,,的變化情況如下表:
|
- |
+ |
|
||
1/e |
4分
∴時,,. 5分
(2)命題等價于對任意,
恒成立,
即對任意恒成立.
則,有,
又, 9′
只需或.
綜上:的取值范圍為或. 12′
考點:1.利用導數(shù)處理函數(shù)的單調(diào)性和最值;2.利用導數(shù)處理不等式恒成立問題
科目:高中數(shù)學 來源: 題型:
a2 | x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
lnx+k | ex |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
若存在實常數(shù)和,使得函數(shù)和對其定義域上的任意實數(shù)分別滿足:和,則稱直線為和的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)),根據(jù)你的數(shù)學知識,推斷與間的隔離直線方程為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(山東卷解析版) 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導函數(shù).證明:對任意.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年四川省成都市模擬考試理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.
【解析】第一問中,當時,,.結(jié)合表格和導數(shù)的知識判定單調(diào)性和極值,進而得到最值。
第二問中,∵,,
∴原不等式等價于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當時,,.
當在上變化時,,的變化情況如下表:
|
- |
+ |
|
||
1/e |
∴時,,.
(Ⅱ)∵,,
∴原不等式等價于:,
即, 亦即.
∴對于任意的,原不等式恒成立,等價于對恒成立,
∵對于任意的時, (當且僅當時取等號).
∴只需,即,解之得或.
因此,的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com